Evaluating the Sum of $a+b+c$ for Equation $x^5-12x^4+ax^3+bx^2+cx-64=0$

  • MHB
  • Thread starter anemone
  • Start date
  • Tags
    Sum
In summary, the conversation discusses solving a problem involving a polynomial equation and finding the sum of its coefficients. The equation has all positive real roots, and the conversation presents one possible solution with a sum of 72. However, it is shown that this is not the only solution and the sum of coefficients can vary.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Hi MHB,

I have solved the problem as stated below but I don't know if it's an unique solution and even if it is, I have no idea how to prove that would be the case.

Can anyone show me how to approach the problem correctly?

For the equation $x^5-12x^4+ax^3+bx^2+cx-64=0$, all of its roots are positive real numbers. Evaluate the sum of $a+b+c$.

Attempt:

It's quite obvious from the values of the product of all 5 roots and the sum of them reveal that the equation $x^5-12x^4+ax^3+bx^2+cx-64=0$ has roots of 2 and 4, of which 2 is the repeated root of multiplicity 4, since

$2+2+2+2+4=12$ and $2^4(4)=64$,

Then there are many ways to find the values for $a, b, c$ and at last, after the values of $a, b, c$ are known, we can conclude that $a+b+c=56+144-128=72$.
 
Mathematics news on Phys.org
  • #2
anemone said:
Hi MHB,For the equation $x^5-12x^4+ax^3+bx^2+cx-64=0$, all of its roots are positive real numbers. Evaluate the sum of $a+b+c$.

Hello.

[tex]Let \ r_1, \ r_2, \ r_3, \ r_4, \ r_5 \ roots \ of: \ /[/tex]

[tex]/ \ x^5-12x^4+ax^3+bx^2+c^x-64=(x-r_1)(x-r_2)(x-r_3)(x-r_4)(x-r_5)[/tex][tex]a=r_1r_2+r_1r_3+r_1r_4+r_1r_5+r_2r_3+r_2r_4+r_2r_5+r_3r_4+r_3r_5+r_4r_5=C^5_2[/tex]

[tex]b=-(r_1r_2r_3+r_1r_2r_4+r_1r_2r_5+r_1r_3r_4+r_1r_3r_5+r_1r_4r_5+r_2r_3r_4+r_2r_3r_5+r_2r_4r_5+r_3r_4r_5)=C^5_3[/tex]

[tex]c=r_1r_2r_3r_4+r_1r_2r_3r_5+r_1r_2r_4r_5+r_1r_3r_4r_5+r_2r_3r_4r_5=C^5_4[/tex]

To include all combinations in the factors [tex]r_i[/tex], guarantees us that the solution is unique. Since you get all numerical products between 2, 3 and 4 factors, with the same result.

I do not know if I understood your question correctly.(Headbang)

regards.
 
  • #3
mente oscura said:
Hello.

[tex]Let \ r_1, \ r_2, \ r_3, \ r_4, \ r_5 \ roots \ of: \ /[/tex]

[tex]/ \ x^5-12x^4+ax^3+bx^2+c^x-64=(x-r_1)(x-r_2)(x-r_3)(x-r_4)(x-r_5)[/tex][tex]a=r_1r_2+r_1r_3+r_1r_4+r_1r_5+r_2r_3+r_2r_4+r_2r_5+r_3r_4+r_3r_5+r_4r_5=C^5_2[/tex]

[tex]b=-(r_1r_2r_3+r_1r_2r_4+r_1r_2r_5+r_1r_3r_4+r_1r_3r_5+r_1r_4r_5+r_2r_3r_4+r_2r_3r_5+r_2r_4r_5+r_3r_4r_5)=C^5_3[/tex]

[tex]c=r_1r_2r_3r_4+r_1r_2r_3r_5+r_1r_2r_4r_5+r_1r_3r_4r_5+r_2r_3r_4r_5=C^5_4[/tex]

To include all combinations in the factors [tex]r_i[/tex], guarantees us that the solution is unique. Since you get all numerical products between 2, 3 and 4 factors, with the same result.

Thanks, mente oscura for the reply.:)

But...I don't quite get you especially the part when you mentioned the way to guarantee the only set values for all the 5 real positive roots (that I obtained via eyeballing) is the unique set of solution for solving the equation $x^5-12x^4ac^3+bx^2+cx-640=0$.

Yes, I know $a$ consists of the sum of $5\choose2$ terms, $b$ consists of the sum of $5\choose3$ terms and last, $c$ consists of the sum of $5\choose4$ terms, but how does one relate it to the number of sets of solution that we could get based on the only known values for the sum/product of roots?
 
  • #4
anemone said:
Hi MHB,

I have solved the problem as stated below but I don't know if it's an unique solution and even if it is, I have no idea how to prove that would be the case.

Can anyone show me how to approach the problem correctly?

For the equation $x^5-12x^4+ax^3+bx^2+cx-64=0$, all of its roots are positive real numbers. Evaluate the sum of $a+b+c$.

Attempt:

It's quite obvious from the values of the product of all 5 roots and the sum of them reveal that the equation $x^5-12x^4+ax^3+bx^2+cx-64=0$ has roots of 2 and 4, of which 2 is the repeated root of multiplicity 4, since

$2+2+2+2+4=12$ and $2^4(4)=64$,

Then there are many ways to find the values for $a, b, c$ and at last, after the values of $a, b, c$ are known, we can conclude that $a+b+c=56+144-128=72$.
That is not the only solution, and the value of $a+b+c$ is not unique. The equation $\displaystyle x^5 - 12x^4 + \frac{509}9x^3 - \frac{1174}9x^2 + \frac{440}3x - 64 = 0$ has roots $\displaystyle \frac43,\,2,\,\frac83,\,3,\,3$, and the sum of coefficients $a+b+c$ is $\displaystyle \frac{509}9 + \frac{440}3 - \frac{1174}9 = \frac{655}9 \ne 72.$
 
  • #5
Opalg said:
That is not the only solution, and the value of $a+b+c$ is not unique. The equation $\displaystyle x^5 - 12x^4 + \frac{509}9x^3 - \frac{1174}9x^2 + \frac{440}3x - 64 = 0$ has roots $\displaystyle \frac43,\,2,\,\frac83,\,3,\,3$, and the sum of coefficients $a+b+c$ is $\displaystyle \frac{509}9 + \frac{440}3 - \frac{1174}9 = \frac{655}9 \ne 72.$

Thank you so much Opalg for your reply and also showing me the counter example (I have been trying very hard to find for another solution set by the help of wolfram, after I tried the combinations such as $\displaystyle \frac12,\,4,\,\frac52,\,r_4,\,r_5$ for which the remaining effort to look for the perfect candidates for all those 5 roots seemed no easy task for me.:mad:). Now I would just discard this question.:)
 
  • #6
anemone said:
I tried the combinations such as $\displaystyle \frac12,\,4,\,\frac52,\,r_4,\,r_5$
You are told that $r_1 + r_2 + r_3 + r_4 + r_5 = 12$ and $r_1r_2r_3r_4r_5 = 64$. The GM-AM inequality applied to the numbers $r_1,r_2,r_3,r_4,\sqrt{r_5},\sqrt{r_5}$ shows that $2 \leqslant \frac16(r_1 + r_2 + r_3 + r_4 + 2\sqrt{r_5})$, from which $r_5 \leqslant 2\sqrt{r_5}$, with equality only if $r_1=r_2=r_3=r_4=\sqrt{r_5}$. So if one of the roots is $4$ then the others must all be $2$. When I realized that, I tried putting three of the roots equal to $2,\,3$ and $3$, and I was surprised to find that I could then get a solution for the other two roots.
 
  • #7
Opalg said:
You are told that $r_1 + r_2 + r_3 + r_4 + r_5 = 12$ and $r_1r_2r_3r_4r_5 = 64$. The GM-AM inequality applied to the numbers $r_1,r_2,r_3,r_4,\sqrt{r_5},\sqrt{r_5}$ shows that $2 \leqslant \frac16(r_1 + r_2 + r_3 + r_4 + 2\sqrt{r_5})$, from which $r_5 \leqslant 2\sqrt{r_5}$, with equality only if $r_1=r_2=r_3=r_4=\sqrt{r_5}$. So if one of the roots is $4$ then the others must all be $2$. When I realized that, I tried putting three of the roots equal to $2,\,3$ and $3$, and I was surprised to find that I could then get a solution for the other two roots.

Thank you again Opalg for your patience and willingness to teach me more about how to look for other possible solution for this problem. I really appreciate your help!:)

I like it how you made the six terms up $r_1,r_2,r_3,r_4,\sqrt{r_5},\sqrt{r_5}$ and then applied the AM-GM inequality for those numbers! I learn a great deal from you today! :eek:
 

1. What is the purpose of evaluating the sum of a+b+c in this equation?

The sum of a+b+c in this equation is used to find the value of x that satisfies the equation. By evaluating this sum, we can solve for x and find all possible solutions to the equation.

2. How do you evaluate the sum of a+b+c in this equation?

To evaluate the sum of a+b+c, we need to first identify the coefficients of each term in the equation. Then, we simply add these coefficients together to find the sum. This sum can then be used to solve for x.

3. Why is it important to solve for x in this equation?

Solving for x allows us to find the roots or solutions of the equation. These solutions are the values of x that make the equation true. It is important to find all possible solutions in order to fully understand the behavior and properties of the equation.

4. Can the sum of a+b+c in this equation have multiple solutions?

Yes, the sum of a+b+c can have multiple solutions. This means that there can be more than one value of x that satisfies the equation. It is important to carefully evaluate the sum and consider all possible solutions in order to accurately solve the equation.

5. How can evaluating the sum of a+b+c impact the overall solution to the equation?

The sum of a+b+c is a crucial part of solving the equation and finding the values of x that satisfy it. By evaluating this sum, we can narrow down the possible solutions and find the exact values of x. Without evaluating the sum, the solution to the equation may not be accurate or complete.

Similar threads

Replies
3
Views
848
Replies
4
Views
970
  • General Math
Replies
1
Views
687
Replies
1
Views
774
Replies
1
Views
881
  • General Math
Replies
1
Views
815
  • General Math
Replies
6
Views
1K
  • General Math
Replies
7
Views
891
  • General Math
Replies
2
Views
1K
Back
Top