MHB Example on Triangular Rings - Lam, Example 1.14

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading T. Y. Lam's book, "A First Course in Noncommutative Rings" (Second Edition) and am currently focussed on Section 1:Basic Terminology and Examples ...

I need help with an aspect of Example 1.14 ... ...

Example 1.14 reads as follows: https://www.physicsforums.com/attachments/5984
https://www.physicsforums.com/attachments/5985I cannot follow why the results in Table 1.16 follow ...

For example, according to Table 1.16 ...

$$mr = 0$$ for all $$m \in M$$ and $$r \in R$$ ... but why

Similarly I don't follow the other entries in the Table ...

Can someone please help ...

Peter
 
Physics news on Phys.org
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
 
Deveno said:
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter
 
Peter said:
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter

$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
 
Deveno said:
$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
Thanks for for the help, Deveno ...

Just working through your post and reflecting on what you have said ...

Thanks again ...

Peter
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top