Find the Tension in the cable when the lift is moving at constant speed

AI Thread Summary
When a lift moves at constant speed, the tension in the cable equals the weight of the lift, calculated as T = mg, resulting in a tension of 10,500 Newtons. The discussion raises a question about whether the same tension equation, T - mg = ma, applies when the lift is moving downwards with deceleration. It is noted that while considering the direction of forces, tension and gravitational force should be treated as vectors. The importance of reasoning through problems independently is emphasized, highlighting that simply seeking confirmation does not constitute effective learning. Overall, understanding the dynamics of tension in both upward and downward movements is crucial for accurate problem-solving.
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
The maximum load that a lift of mass ##600## kg can hold is ##450##kg. Find the tension in the cable when the lift is holding a maximum load and is moving at a constant speed of ##3## m/s
Relevant Equations
Vertical motion - Mechanics.
aaaah just realized the solution after typing here...

... at constant speed, ##a=0##,

therefore

##T-mg = 0##

##T=(1050 × 10) =10, 500## Newtons

or any insight...welcome.



Maybe i should ask...when the lift is moving downwards and there is deceleration then would the Tension be treated in the same manner as moving upwards with acceleration?

Would the equation below apply to both scenario?

##T-mg = ma## ?

Cheers.
 
Physics news on Phys.org
With a reference direction of up is positive, then if it is moving down (negative) a positive acceleration will result in it slowing down (decelerate).
 
Rather than saying T - mg, I would consider them as vectors, since g is down it is negative. Then you have: ma = T+ mg
 
chwala said:
Maybe i should ask...when the lift is moving downwards and there is deceleration then would the Tension be treated in the same manner as moving upwards with acceleration?
What do you think? Why?

chwala said:
Would the equation below apply to both scenario?

##T-mg = ma## ?
What do you think? Why?

This approach to "learning" where you guess answers and seek confirmation from others is not learning at all: reasoning things out for yourself is an essential part of learning. That is why we ask you to show your workings.
 
  • Like
Likes scottdave, MatinSAR and PeroK
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top