I Gravitational Time Dilation: Radius & Clock Rate Variation Explained

Zman
Messages
96
Reaction score
0
(Apologies I posted this initially as a conversation. Not familiar with the format)

I used the ‘gravitational time dilation’ equation to see how the clock rate varies with distance from the center of an object. I got the opposite result to what I was expecting.From Wikipedia;

Gravitational time dilation outside a non-rotating sphere

fc63dfccb6a0a7379475600a65b36b65fb7b88e5
t0 is the proper time between events A and B for a slow-ticking observer within the gravitational field,

tf is the coordinate time between events A and B for a fast-ticking observer at an arbitrarily large distance from the massive object (this assumes the fast-ticking observer is using Schwarzschild coordinates, a coordinate system where a clock at infinite distance from the massive sphere would tick at one second per second of coordinate time, while closer clocks would tick at less than that rate),

r is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object, but is actually a Schwarzschild coordinate),

rs is the Schwarzschild radius.I was interested to find out how the radius r varies with the time ratio t0/ tf for a given mass.

I plugged in t0/ tf = 1/10

This is effectively asking what is r when the fast clock is running 10 times faster than the slow clock.

The answer is r = rs X 100/99Then I asked what is r when the fast clock is running 2 times faster than the slow clock.

I plugged in t0/ tf = ½ expecting a smaller radius

I got the answer r = rs X 4/3 which is a bigger radius than the previous case.Clocks tick more slowly at the center than higher up. The higher up (the greater the radius) the faster a clock ticks relative to the center clock.Looking to clear up my confusion
 
Physics news on Phys.org
Zman said:
Clocks tick more slowly at the center than higher up. The higher up (the greater the radius) the faster a clock ticks relative to the center clock
Yes. Incidentally, the analysis you are doing assumes the clock is hovering (or sitting on a solid surface), not orbiting.

The numbers you give seem consistent with this - the slowest clock is at about 1.01##r_S##, the next fastest is higher up at 1.33##r_S##, and the fastest clock is at infinity.

Edit: so ##r## is the "altitude" of the lower clock. This is being compared to a clock at infinity.

Edit2: ##t_0/t_f=1/2## means that the clock at infinity ticks twice in the time it takes the lower clock to tick once.
 
Last edited:
Ibix said:
Edit: so r is the "altitude" of the lower clock. This is being compared to a clock at infinity.

Yes, the lower clock running at half the rate of the clock at infinity will have a larger radius than the lower clock running at a tenth the rate of the clock at infinity. Obvious. Though I need to make a note of how to correctly interpret the equation.

Thank you for that.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
54
Views
3K
Replies
9
Views
346
Replies
58
Views
4K
Replies
16
Views
2K
Replies
103
Views
5K
Replies
3
Views
2K
Replies
58
Views
6K
Back
Top