A How can I calculate the square of the Pauli-Lubanski pseudovector?

tannhaus
Messages
2
Reaction score
0
TL;DR Summary
I need to calculate the square of the Pauli-Lubanski pseudovector in a rest frame such that the results is proportional to the square of the spin operator.
Hello there, recently I've been trying to demonstrate that, $$\textbf{W}^2 = -m^2\textbf{S}^2$$ in a rest frame, with ##W_{\mu}## defined as $$W_{\mu} = \dfrac{1}{2}\varepsilon_{\mu\alpha\beta\gamma}M^{\alpha\beta}p^{\gamma}$$ such that ##M^{\mu\nu}## is an operator of the form $$ M^{\mu\nu}=x^{\mu}p^{\nu} - x^{\nu}p^{\mu} + \frac{i}{2}\Sigma^{\mu\nu}$$ and ##S^i## defined as $$S_i = \varepsilon^{ijk}\frac{i}{2}\Sigma^{jk}$$ Where ##\Sigma^{\mu\nu} = [\beta^{\mu}, \beta^{\nu}]##. I've managed to show that ##\textbf{S}^2 = \dfrac{1}{2}\Sigma^{ij}\Sigma_{ij}## but I can't for my life work out the necessary result. Any sort of light towards this is very welcome!
 
Physics news on Phys.org
Your expressions are manifestly covariant. "Spin" for a massive particle is, however, most easily to interpret in the rest frame of the particle. So to have some intuitive picture, it's best to calculate it within this frame, and this is simply defined by ##(p^{\mu})=(m c,0,0,0)##. In this frame you have a pretty intuitive interpretation of "spin" and the Pauli Lubanski vector (the latter one being the only viable definition of spin in relativistic physics, where in general a unique split of total angular momentum into "spin" and "orbital" is not possible). For more on "classical spin" in relativity, see Sect. 1.8 in

https://itp.uni-frankfurt.de/~hees/pf-faq/srt.pdf

That becomes much clearer in the context of relativistic QFT and a detailed analysis of the representation theory of the Poincare group, where the Pauli Lubanski vector is the generator for little-group transformations, and the little group for massive-particle representations is the rotation group (or its covering group SU(2)) as defined in the rest frame of the particle. The quantities in other frames is then given by the (rotation free) Lorentz boosts from the rest frame of the particle to an arbitrary frame, where it's moving. For details see

https://itp.uni-frankfurt.de/~hees/publ/lect.pdf

(particularly Appendix B).
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top