MHB How Do You Solve This Floor Function Equation?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Solve the equation $\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$, where $\{a\}$ denotes the fractional part of $a$.
 
Mathematics news on Phys.org
My attempt:

\[\left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+2a+2}{a^2+1} \right \}=\frac{2a-a^2}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{a^2+1+2a+1}{a^2+1} \right \}=\frac{2a+1-(a^2+1)}{a^2+1}\\\\ \left \lfloor \frac{2a+1}{a^2+1} \right \rfloor\left \{ \frac{2a+1}{a^2+1} \right \}=\frac{2a+1}{a^2+1}-1\]

Let $q(a) = \frac{2a+1}{a^2+1}$

The function $q$ has two extrema and two asymptotes: View attachment 4761

From the graph it is obvious, that $q$´s range is included in the open interval $(-1,2)$:

\[q: \mathbb{R}\rightarrow Y \subset (-1;2)\]

If $|q| < 1$ there is no solution, because:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=0\cdot q \neq q-1\;\;\; 0 \le q<1\]

And

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(-1)\cdot q \neq q-1 \;\;\; -1<q < 0\]

If $1 \le q < 2$ (for $0 \le a \le 2$) you get:

\[\left \lfloor q \right \rfloor\left \{ q \right \}=(+1)\cdot (q-1) = q-1\]

So the set, $S$, of solutions is: \[S=\left \{ a \in \mathbb{R}\: \: \: |\: \: \: 0 \le a \le 2 \right \}\]
 

Attachments

  • Floor challenge q-graph.png
    Floor challenge q-graph.png
    4.9 KB · Views: 98
Well done, lfdahl, and thanks for participating!:)

My solution:

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{a^2+ 2a +2}{a^2+ 1}\right\}=\dfrac{2a -a^2}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{1+\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1 -a^2-1}{a^2 + 1}$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\dfrac{2a+1}{a^2 + 1}-1$

$\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor+\left\{\dfrac{2a +1}{a^2+ 1}\right\}-1$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor-\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left\{\dfrac{2a +1}{a^2+ 1}\right\}$

$1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor\left(1-\left\{\dfrac{2a +1}{a^2+ 1}\right\}\right)$

$1=\left\lfloor{\dfrac{2a + 1}{a^2+ 1}}\right\rfloor$

Solving it for $x$ we get $\{x:0≤ x≤ 2\}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top