MHB How does the Bessel Function Expansion relate to J_{0}(u+v)?

AI Thread Summary
The discussion focuses on deriving the relationship between the Bessel function expansion and the expression for J_{0}(u+v). The key equation used is g(x,t) = g(u+v,t) = g(u,t)g(v,t), leading to the conclusion that J_{0}(u+v) can be expressed as a product of J_{0}(u) and J_{0}(v) plus a summation term involving J_{s}(u) and J_{-s}(v). The derivation involves manipulating exponential forms and summations of Bessel functions. The final result confirms that J_{0}(u+v) = J_{0}(u)J_{0}(v) + 2∑_{s=1}^{∞}J_{s}(u)J_{-s}(v). The discussion concludes with a successful resolution of the problem.
Another1
Messages
39
Reaction score
0
Bessel function

using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion
 
Last edited:
Mathematics news on Phys.org
Another said:
using $$g(x,t)=g(u+v,t)=g(u,t)g(v,t)$$

to show that $$J_{0}(u+v)=J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$

___________________________________________________________________________________________
my solution

$$g(u+v,t)=e^{\frac{u+v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=e^{\frac{u}{2}(t-\frac{1}{t})}\cdot e^{\frac{v}{2}(t-\frac{1}{t})}$$
$$g(u+v,t)=\sum_{n=-\infty}^{\infty}J_{n}(u)t^{n}\sum_{n=-\infty}^{\infty}J_{n}(v)t^{n}$$

$$J_{n}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!(n+s)!}(\frac{u+v}{2})^{n+2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}(\frac{u}{2}+\frac{v}{2})^{2s}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{(\frac{u}{2}+\frac{v}{2})^{2s} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \sum_{k=0}^{2s}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{ \left(\frac{u}{2}\right)^{2s}+\left(\frac{v}{2}\right)^{2s}+ \sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$
$$J_{0}(u+v)=J_{0}(u)+J_{0}(v)+\sum_{s=0}^{\infty}\frac{(-1)^{s}}{s!s!}\left\{\sum_{k=1}^{2s-1}{2s\choose k}\left(\frac{u}{2} \right)^{2s -k}\left(\frac{v}{2} \right)^{k} \right\}$$

this is wrong
____________________________________________________________________________________________

please help me to solve this soluion

now i can solve it thankkkk !

$$g(u+v,t)=g(u,t)g(v,t)$$

$$e^{\frac{u+v}{2}(t-\frac{1}{t})}=e^{\frac{u}{2}(t-\frac{1}{t})}e^{\frac{v}{2}(t-\frac{1}{t})}$$

$$\sum_{n=-\infty}^{\infty}J_{n}(u+v)t^n=\sum_{l=-\infty}^{\infty}J_{l}(u)t^l\sum_{m=-\infty}^{\infty}J_{m}(v)t^m$$

let n = 0
$$J_{0}(u+v)= \left(...+J_{-1}(u)t^{-1}+J_{0}(u)+J_{1}(u)t^1+...\right)\left(...+J_{-1}(v)t^{-1}+J_{0}(v)+J_{1}(v)t^1+...\right)$$

but $$J_{-n}(u)=(-1)^{n}J_{n}(u)$$
so...
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2J_{1}(u)J_{-1}(v)+2J_{2}(u)J_{2}(v)+...$$
$$J_{0}(u+v)= J_{0}(u)J_{0}(v)+2\sum_{s=1}^{\infty}J_{s}(u)J_{-s}(v)$$
 
Funions!
 
Joppy said:
Funions!

oh sorry I mean function n and c missing from word
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top