A How to derive the quantum detailed balance condition?

  • A
  • Thread starter Thread starter lsdragon
  • Start date Start date
  • Tags Tags
    Hilbert space
lsdragon
Messages
1
Reaction score
2
TL;DR Summary
I want some help to get the definition of quantum detailed balance condition from analogy of classical detailed balance condition
In the "On The detailed balance conditions for non-Hamiltonian systems", I learned that for a Markov open quantum system to satisfying the master equation with the Liouvillian superoperators, the detailed balance condition will be

> Definition 2: The open quantum Markovian system (##dim(\mathcal{H}) < \infty##) obeys the detailed balance principle if the generator ##L## in Heisenberg picture is a normal operator in Hilbert space ##\mathcal{B}_{\rho_0}(\mathcal{H})## (see Definition 1).

>Definition 1: ##\mathcal{B}_{\rho_0}(\mathcal{H})## denotes the Hilbert space of all linear operators on the finite-dimensional Hilbert space ##\mathcal{H}## with the scalar product defined by the formula
$$\langle A, B\rangle = Tr(A^\dagger B \rho_0), A,B \in \mathcal{B}_{\rho_0}(\mathcal{H})$$
where ##\rho_0## is a fixed state (density matrix) and ## \rho_0 > 0##.

The ##L## is the adjoint operator, defined with respect to definition 1, of the Liouvillian superoperator ##\mathcal{L}##, such that
$$
\frac{d \rho}{d t} = \mathcal{L} \rho \\
\frac{d A}{d t} = L A, A\in \mathcal{B}_{\rho_0}(\mathcal{H}).
$$

The author started from the classical detailed balance condition ##p_{ij}\pi_j = p_{ji}\pi_i## and finally get to definition 2.

For me, I will write the quantum analogy of detailed balance as
$$
\langle A,L(B) \rangle = \langle B, L(A)\rangle .
$$
I can not get the normality of ##L## from the above definition.
Then, my question is that how can we get to definition 2 starting from the classical version of detailed balance?
 
Last edited by a moderator:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top