Is there a rule that states that I should not divide in this scenario?

In summary: You have to use ##\log_2 x^2 =2\cdot \log |x|## since the logarithm doesn't allow negative arguments. Therefore you end up with ##2^{1/2}=\sqrt{2}=|x|## which includes both signs!
  • #1
Callmelucky
144
30
Homework Statement
Write the coordinates of points where ##f(x)=\log _{2} x^2 -1## intersects x and y axis
Relevant Equations
##\log _{a} x^n = n\times \log _{a} x##
So basically this is how I solved this problem:
1. ##f(x)=\log _{2} x^2 - 1##
2. ##0=\log _{2} x^2 -1 ##
3. ##1= 2\times \log _{2} x##
4. ##\frac{1}{2}= \log _{2} x##
5. ##2^{\frac{1}{2}}=x=\sqrt{2}##

So I wrote coordinates to be (##\sqrt{2}##, 0)

But apparently, that is not the only solution. There should be another answer with a negative sign so (##\pm\sqrt{2}##, 0) would be a complete solution for points at which graphs cross the x line. There are no points where the graph crosses the y-line.
This is how it's solved in the textbook(pic in attachments). And I understand that it's correct because the graph really does cross the x-line in those points.
So, my question is, is there a rule I am not aware of that states that I can't divide an equation with n(exponent of an argument moved down to the front)?

Thank you.
 

Attachments

  • 19.04.jpg
    19.04.jpg
    30.3 KB · Views: 58
  • 19999.png
    19999.png
    14.6 KB · Views: 65
Last edited:
Physics news on Phys.org
  • #2
What is the domain of your function? The problem is basically in the 3rd step.
 
  • Like
Likes Callmelucky
  • #3
weirdoguy said:
What is the domain of your function? The problem is basically in the 3rd step.
I didn't learn about domain, in Croatia we learn that in 4th grade of high school, I am in 2nd right now. Are you saying that I can't move 2 down if it's original place is up?
 
  • #4
You can, but it will be ##2\log_2|x|## instead of what you wrote. That's because your ##x##'s can be negative, eg: for ##x=-2## we have ##\log_2(-2)^2=\log_24=2##
 
  • Like
Likes Callmelucky
  • #5
weirdoguy said:
You can, but it will be ##2\log_2|x|##, because your ##x##'s can be negative.
Ohh, that make sense, should I always do that when moving 2 down? Because I haven't done that once so far
 
  • #6
In the cases of functions like this one in your example yes. The rule: ##\log a^n=n\log a## works only for positive ##a##, and in the function you gave your "##a##" (which is ##x##) could be negative.
 
  • Like
Likes Callmelucky
  • #7
weirdoguy said:
In the cases of functions like this one in your example yes. The rule: ##\log a^n=n\log a## works only for positive ##a##, and in the function you gave your "##a##" (which is ##x##) could be negative.
Okay, thank you very much. :D
 
  • #8
Callmelucky said:
Homework Statement: Write the coordinates of points where ##f(x)=\log _{2} x^2 -1## intersects x and y axis
Relevant Equations: ##\log _{a} x^n = n\times \log _{a} x##

So basically this is how I solved this problem:
1. ##f(x)=\log _{2} x^2 - 1##
2. ##0=\log _{2} x^2 -1 ##
3. ##1= 2\times \log _{2} x##
4. ##\frac{1}{2}= \log _{2} x##
5. ##2^{\frac{1}{2}}=x=\sqrt{2}##

So I wrote coordinates to be (##\sqrt{2}##, 0)
From line 2, you have ##\log_2(x^2) = 1 \Rightarrow x^2 = 2 \Rightarrow x= \pm \sqrt 2##
Callmelucky said:
But apparently, that is not the only solution. There should be another answer with a negative sign so (##\pm\sqrt{2}##, 0) would be a complete solution for points at which graphs cross the x line. There are no points where the graph crosses the y-line.
 
  • Like
Likes Callmelucky
  • #9
Mark44 said:
From line 2, you have ##\log_2(x^2) = 1 \Rightarrow x^2 = 2 \Rightarrow x= \pm \sqrt 2##
yeah, but I was confused why the method I was using so far isn't working anymore. Thank you.
 
  • #10
Callmelucky said:
yeah, but I was confused why the method I was using so far isn't working anymore. Thank you.
It's because your relevant equation -- ##\log_a (x^n) = n\log_a(x)## -- is valid only for x > 0. Although ##x = \sqrt 2## is a solution of equations 2 and 4, ##x = -\sqrt 2## is also a solution of the original equation.
 
  • #11
Callmelucky said:
yeah, but I was confused why the method I was using so far isn't working anymore. Thank you.
You have to use ##\log_2 x^2 =2\cdot \log |x|## since the logarithm doesn't allow negative arguments. Therefore you end up with ##2^{1/2}=\sqrt{2}=|x|## which includes both signs!
 

1. Is there a specific rule that prohibits dividing in certain scenarios?

Yes, there are certain rules in mathematics that state when dividing is not allowed. For example, division by zero is not allowed because it results in an undefined answer.

2. Can I divide by a variable in an equation?

Yes, you can divide by a variable in an equation as long as the variable is not equal to zero. If the variable is equal to zero, then the equation becomes undefined.

3. Is there a rule against dividing by a negative number?

No, there is no rule that prohibits dividing by a negative number. However, it is important to pay attention to the signs when dividing by negative numbers to ensure the correct answer.

4. Can I divide by a fraction?

Yes, dividing by a fraction is the same as multiplying by its reciprocal. So, as long as the denominator of the fraction is not equal to zero, dividing by a fraction is allowed.

5. Are there any exceptions to the rules of division?

Yes, there are some exceptions to the rules of division. For example, when dividing by infinity, the result is always zero. Also, when dividing by a very small number, the result can be significantly larger than the dividend.

Similar threads

  • Precalculus Mathematics Homework Help
Replies
4
Views
368
  • Precalculus Mathematics Homework Help
Replies
4
Views
919
  • Precalculus Mathematics Homework Help
2
Replies
39
Views
2K
  • Precalculus Mathematics Homework Help
Replies
3
Views
916
  • Precalculus Mathematics Homework Help
Replies
19
Views
2K
  • Precalculus Mathematics Homework Help
Replies
13
Views
305
  • Precalculus Mathematics Homework Help
Replies
9
Views
978
  • Precalculus Mathematics Homework Help
Replies
3
Views
759
  • Precalculus Mathematics Homework Help
Replies
10
Views
613
  • Precalculus Mathematics Homework Help
Replies
7
Views
397
Back
Top