I Is this correct? Casimir Effect

  • I
  • Thread starter Thread starter raracon
  • Start date Start date
  • Tags Tags
    Casimir effect
raracon
Messages
35
Reaction score
14
TL;DR Summary
Quick fact check
"In the example of Fig. 1, Maxwell’s equations allow field modes of arbitrarily large frequency both between the plates and outside them, and therefore the zero-point field energy is infinite when the plates are separated by a finite distance d as well as when they are infinitely far apart. However, the difference in zero-point energy for the two cases is finite, and its dependence on the plate separation d implies a force F = −πhc/480d^4 per unit area."

Fig 1:
CASE.png


Read this in a book about the Casimir Effect. Now my question is if it is correct to say that between the two perfectly conducting plates there can be modes with any frequency? I've read in other books that the frequency is limited by the separation between the plates.

And my other question is how does one explain F = −πhc/480d^4 ?
 
Physics news on Phys.org
A Wiki article https://en.wikipedia.org/wiki/Casimir_effect shows formula, the excitation is quantized by plane boundary condition so lower vacuum energy than outside take place between the plates. The formula of F is also derived there.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top