Lab experiment: hysteresis disappears, reappears and then disappears again. How?

In summary, the conversation discussed an experiment to measure hysteresis curves of a ferromagnetic material at different temperatures. The results showed unexpected behavior, with the magnetization disappearing and reappearing at certain temperatures. The participants had two theories for this phenomenon, one involving the material being covered in ice and the other involving the material being a different, more exotic material. The experimental setup involved creating an external field with a solenoid and measuring the voltage drop over a resistance connected to the solenoid. Further measurements were suggested to determine the composition of the material.
  • #1
barboza.g
3
0
Hi people,

In my college laboratory we were assigned an experiment to measure the hysteresis curves of a certain ferromagnetic material at different temperatures. Sounds simple, right? Well, the block of Monel 400 we chose did something weird.

We cooled it down to about -200°C and set about to measuring its spontaneous magnetism as it heated up (read below for experimental setup). We were expecting it to approach zero at a Curie temperature of 10°C and adjust our measured values using the function [itex]M\propto (T-T_c)^\beta[\itex]. However, the magnetization did the following:

wWCbZ.jpg


Basically, our spontaneous magnetization disappeared at about -32°C, came back with a vengance at 0°C and disappeared again at 10°C. After the material passed its Curie temperature of 10°C it behaved paramagnetically (its observed magnetization was very small); however, between 32°C and -10°C it obtained very large magnetizations, as if the hysteresis curve got really thin and then wider again.

JmwO2.jpg


Does anyone know why this is happening? We currently have two ideas:
  1. At a certain point, our bar of Monel 400 got covered in ice. Since the area contained by the curve is proportional to the heat dissipated by the material, maybe the fact that it was covered in ice isolated it from the room and forced the hysteresis curve to become very thin.
  2. It's not actually Monel 400 (very possible, nobody in the lab really knows what the bar is made of) and rather a more exotic material with antiferromagnetic behavior in a certain temperature range. (This is what our lab professors think might be happening).
Does anyone know if these things are plausible?

Experimental setup:

We created an time-varying external field using a solenoid hooked up to an AC power supply, and measured the voltage drop over a resistance connected between the solenoid and the generator. This voltage drop is proportional to the current via Ohm's law, which is proportional to the external field considered constant over a small region in space for a given instant in time. The material subjected to the external field acquired a time-varying magnetization.

We placed two smaller solenoids connected to each other over the large one in such a way that they each canceled out any induced fields and measured the voltage drop over them (which at this point was zero). Now we placed the ferromagnetic material inside one of the small solenoids: its varying magnetic flux through it created an electromotive force. We connected the solenoids to an op-amp integrator circuit and measured the output, which is proportional to the magnetic flux, which is proportional to the induced magnetization.

Then we graphed the magnetization as a function of the external field, and took the values of the spontaneous magnetization as being proportional to the flux when there was no current across the primary solenoid.

?temp_hash=7e5c0a138e39dfb0875f12a560bb9100.jpg


P is the primary solenoid, B1 and B2 the two smaller solenoids.
 

Attachments

  • esqyanqui.jpg
    esqyanqui.jpg
    16.7 KB · Views: 631
Physics news on Phys.org
  • #2
barboza.g said:
It's not actually Monel 400 (very possible, nobody in the lab really knows what the bar is made of) and rather a more exotic material with antiferromagnetic behavior in a certain temperature range. (This is what our lab professors think might be happening).

I don't know much about this subject as a whole, but can you do some measurements to see if the bar is made of Monel 400?
 

1. What is hysteresis and why does it occur in lab experiments?

Hysteresis is the phenomenon where the output of a system depends on its past inputs. In lab experiments, this can occur due to various factors such as friction, temperature changes, and material properties.

2. How does hysteresis disappear in a lab experiment?

Hysteresis can disappear in a lab experiment when the system reaches a steady state and the effects of the previous inputs are no longer present.

3. Why does hysteresis reappear after disappearing in a lab experiment?

Hysteresis can reappear in a lab experiment when there is a change in the system, such as a change in input or external conditions, causing the system to behave differently and exhibit hysteresis again.

4. What factors can cause hysteresis to disappear and reappear again in a lab experiment?

Factors such as material properties, system parameters, and external conditions can cause hysteresis to disappear and reappear in a lab experiment. Additionally, the type and complexity of the system can also play a role.

5. How can we minimize the effects of hysteresis in lab experiments?

To minimize the effects of hysteresis in lab experiments, it is important to carefully control and monitor all the factors that can contribute to its occurrence. This includes maintaining consistent experimental conditions, using appropriate materials, and understanding the behavior of the system in detail.

Similar threads

  • Introductory Physics Homework Help
Replies
5
Views
1K
Replies
3
Views
636
  • Electromagnetism
Replies
12
Views
1K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
1K
  • Advanced Physics Homework Help
Replies
9
Views
3K
  • Introductory Physics Homework Help
Replies
13
Views
8K
Replies
3
Views
1K
Back
Top