New Eukaryotic Endosymbiont Found

  • Thread starter Thread starter BillTre
  • Start date Start date
AI Thread Summary
A newly discovered ciliate in an anaerobic lake environment has formed a unique endosymbiotic relationship with a gammaproteobacterium, in addition to its hydrogenosome, which evolved from a mitochondrial endosymbiont. This ciliate, typically reliant on oxygen for ATP production via mitochondria, has adapted to its oxygen-free habitat by utilizing the hydrogenosome for fermentation and the denitrifying endosymbiont for nitrogen reduction from nitrate. The denitrifying endosymbiont possesses a reduced genome of approximately 310 protein-coding genes, reflecting its endosymbiotic status, but it retains more genes than mitochondria due to its shorter evolutionary history in this environment. This dual endosymbiotic relationship highlights the significance of endosymbiosis in the evolution of eukaryotic cells, paralleling the acquisition of chloroplasts in plant cells.
BillTre
Science Advisor
Gold Member
2024 Award
Messages
2,681
Reaction score
11,632
TL;DR Summary
An anaerobic ciliate (a eukaryotic single cell organism) has been found with a non-mitochondrial derived endosymbiont that convert nitrate to nitrogen and produce ATP.
A ciliate containing a new endosymbiont has been found in a anaerobic (no oxygen) environment at the bottom of a lake, with high nitrate levels.
Nature news and views article here.
Nature research article here.

The ciliate is a eukaryote and would normally have inherited a mitochondrial endosymbiont. However, it lives in an anaerobic (oxygen free) environment and its mitochondrial endosymbiont has evolved (devolved) into a hydrogenosome (something that has happened, independently, more than once in other anaerobic ciliates). Hydrosomes use the less efficient fermentation set of reactions to generate ATP.
In this case, the ciliate was able to form an additional endosymbiotic relationship with a free living gammaproteobacterium that instead of using oxygen as an electron acceptor in it electron transport chain (ETC, like in mitochondria), it uses its ETC to make nitrogen from nitrate and produce ATP (denitrification).

Screen Shot 2021-03-03 at 7.28.00 PM.png


So, this ciliate has two kinds of endosymbionts, the hydrogenosome (degeneratively derived from a mitochondrion), as well as the ciliate's newly discovered denitrifying endosymbiont.

The denitrifying endosymbiont has a reduced genome of about 310 protein encoding genes, indicative of its status as an endosymbiont, but not as extreme a reduction as is found in the mitochondria (30-40 genes). E.coli bacteria for example, have about 4,000 genes. By living in the internal environment of another cell, the endosymbiont can take advantage of host cell's physiology and afford to lose redundant genes. However, it has not had as much evolutionary history in this environment as the mitochondria has had, so it has not been under these selective pressures as long.
Screen Shot 2021-03-03 at 7.34.56 PM.png


This second endosymbiotic event in this ciliate's evolutionary lineage, is similar to the eukaryotic cell precursors of plant cells, acquiring a second endosymbiont in the chloroplasts of today's plant cells.
 
Last edited:
  • Like
  • Informative
Likes pinball1970, atyy, jim mcnamara and 2 others
Biology news on Phys.org
This discovery further underscores the importance of endosymbiosis in eukaryotic cell development and evolution.
 
https://www.nhs.uk/mental-health/conditions/body-dysmorphia/ Most people have some mild apprehension about their body, such as one thinks their nose is too big, hair too straight or curvy. At the extreme, cases such as this, are difficult to completely understand. https://www.msn.com/en-ca/health/other/why-would-someone-want-to-amputate-healthy-limbs/ar-AA1MrQK7?ocid=msedgntp&cvid=68ce4014b1fe4953b0b4bd22ef471ab9&ei=78 they feel like they're an amputee in the body of a regular person "For...
Thread 'Did they discover another descendant of homo erectus?'
The study provides critical new insights into the African Humid Period, a time between 14,500 and 5,000 years ago when the Sahara desert was a green savanna, rich in water bodies that facilitated human habitation and the spread of pastoralism. Later aridification turned this region into the world's largest desert. Due to the extreme aridity of the region today, DNA preservation is poor, making this pioneering ancient DNA study all the more significant. Genomic analyses reveal that the...
Back
Top