Potassium Iodide as a catalyst for Hydrogen Peroxide

  • Thread starter Thread starter tongangeline_657
  • Start date Start date
  • Tags Tags
    Catalyst
AI Thread Summary
The discussion centers on the reaction between potassium iodide (KI) and hydrogen peroxide (H2O2). It clarifies that potassium iodide acts differently than a traditional catalyst, as it is consumed in the reaction and transforms into iodide. The reaction is identified as a redox process, where iodide is oxidized to iodine (I2) in both acidic and alkaline conditions. In acidic solutions, the reaction is represented by the equation 2I- + H2O2 + 2H+ → I2 + 2H2O. In alkaline solutions, iodine can further oxidize hydrogen peroxide to produce oxygen, leading to the overall reaction of 2H2O2 → O2 + 2H2O. This highlights the dual role of iodine in the reaction mechanism.
tongangeline_657
Messages
1
Reaction score
0
Hey, I am having trouble understanding the type of reaction that occurs between potassium iodide, and hydrogen peroxide. A website I looked at said that potassium iodide was a catalyst for Hydrogen peroxide, but potassium iodide doesn't work in the same way that a catalyst described by a textbook does, as it gets 'used up' and becomes Iodide, hence it is more like a redox reaction. Could someone please help explain? I am really curious!
 
Chemistry news on Phys.org
tongangeline_657 said:
Hey, I am having trouble understanding the type of reaction that occurs between potassium iodide, and hydrogen peroxide. A website I looked at said that potassium iodide was a catalyst for Hydrogen peroxide, but potassium iodide doesn't work in the same way that a catalyst described by a textbook does, as it gets 'used up' and becomes Iodide, hence it is more like a redox reaction. Could someone please help explain? I am really curious!
Answering your three two questions in order: inadequate reference; yes, you've understood correctly.
 
Depends on the pH. In acidic solution, iodide is oxidised to iodine:
2I- + H2O2 + 2H+ → I2 + 2H2O
In alkaline solution, the same oxidation occurs, but I2 can also oxidise H2O2 to oxygen:
2I- + H2O2 → I2 + 2OH-
I2 + H2O2 + 2OH- → 2I- + O2 + 2H2O
Overall 2H2O2 → O2 + 2H2O
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
I'm trying to find a cheap DIY method to etch holes of various shapes through 0.3mm Aluminium sheet using 5-10% Sodium Hydroxide. The idea is to apply a resist to the Aluminium then selectively ablate it off using a diode laser cutter and then dissolve away the Aluminium using Sodium Hydroxide. By cheap I mean resists costing say £20 in small quantities. The Internet has suggested various resists to try including... Enamel paint (only survived seconds in the NaOH!) Acrylic paint (only...
Back
Top