Proof That 6 Divides Any Integer N

In summary, we have proven that for a positive integer N with decimal expansion N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}, 6 divides N if and only if 6 divides the integer M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m}. This is due to the properties of 2 and 3 being coprime and the fact that 10^m is equivalent to 4 mod(6) for all positive integers m. Therefore, we have shown that the divisibility of N by 6 can be determined by the divisibility of M by
  • #1
Math100
756
202
Homework Statement
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations
None.
Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
 
  • Like
Likes fresh_42
Physics news on Phys.org
  • #2
Math100 said:
Homework Statement:: Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the decimal expansion of a positive integer ## N ##.
Prove that ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer
## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Relevant Equations:: None.

Proof:

Suppose that ## 6 ## divides ## N ##.
Let ## N=a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0} ##, where ## 0\leq a_{k}\leq 9 ##, be the
decimal expansion of a positive integer ## N ##.
Note that ## 6=2\dotsb 3 ##.
This means ## 2\mid 6 ## and ## 3\mid 6 ##.
Then ## 2\mid [4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m}]\implies 2\mid N\Leftrightarrow 2\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
I wouldn't use ##\Leftrightarrow ## if you only prove one direction. You said ##6\,|\,N.##
So ##2 \,|\,N = 2\cdot 5 \cdot (a_{m}10^{m-1}+\dotsb +a_{2}10+a_{1}) + a_0## and ##2\,|\,a_0.##
Now, I see that ##2\,|\,(a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})).##
Math100 said:
Now we have ## 3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})\Leftrightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\Leftrightarrow 3\mid N ##.
Looks correct. But again, avoid the equivalence. We are only interested in one direction. It is easier to read as
\begin{align*}
3\mid (a_{0}+a_{1}+a_{2}+\dotsb +a_{m})&\Rightarrow 3\mid [a_{0}+(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})+3(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Rightarrow 3\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
Math100 said:
Observe that ## 6\mid N\Leftrightarrow 6\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})] ##.
Thus, ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
The key is again that ##2## and ##3## are coprime. We have shown ##6\,|\,N \Longrightarrow ##
\begin{align*}
2&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\text{and}\\
3&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]\\
&\Longrightarrow \\
2\cdot 3 = 6&\mid [a_{0}+4(a_{1}+a_{2}+a_{3}+\dotsb +a_{m})]
\end{align*}
But the last conclusion is only correct for coprime numbers.
E.g. ##2\,|\,12 \wedge 4\,|\,12 \nRightarrow 2\cdot 4= 8\,|\,12.## But ##2## and ##3## are coprime, so ##2\,|\,12 \wedge 3\,|\,12 \nRightarrow 2\cdot 3= 6\,|\,12.##

Math100 said:
Conversely, suppose ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.

Then ## 10^{m}\equiv 4\pmod {6} ## ## \forall m\in\mathbb{N}\implies 10^{m}-4\equiv 0\pmod {6} ## ## \forall m\in\mathbb{N} ##.
This means ## 6\mid (10^{m}-4) ## ## \forall m\in\mathbb{N} ##.
Observe that ## 6\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\implies 6\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) ##.
Thus ## 6\mid N ##.
Therefore, ## 6 ## divides ## N ## if and only if ## 6 ## divides the integer ## M=a_{0}+4a_{1}+4a_{2}+\dotsb +4a_{m} ##.
Correct. Only the layout isn't optimal:

Observe that
\begin{align*}
6&\mid [(a_{0}+4a_{1}+\dotsb +4a_{m})+(10-4)a_{1}+(10^{2}-4)a_{2}+\dotsb +(10^{m}-4)a_{m}]\\
&\implies \\
6&\mid (a_{m}10^{m}+\dotsb +a_{2}10^{2}+a_{1}10+a_{0}) =N
\end{align*}
 
  • Like
Likes Math100
  • #3
If you want to prove both directions at once, you can use your second part and write:
\begin{align*}
6\,&|\,a_0+4(a_1+\ldots+a_m)=a_0+ 2\cdot (2a_1+\ldots+2a_m) = a_0+a_1+\ldots+a_m+3(a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,a_0 \wedge 3\,|\,(a_0+a_1+\ldots+a_m)\\
&\Longleftrightarrow \\
2\,&|\,N\wedge 3\,|\,N\\
&\Longleftrightarrow \\
6\,&|\,N
\end{align*}
 
  • Like
Likes Math100
  • #4
Interesting. Getting to know for m=1,2,3...

[tex]10^m =99..99+1 \equiv 1 (\mod 3)[/tex]
[tex]10^m -4 \equiv 0 (\mod 3)[/tex]
[tex]10^m -4 \equiv 0 (\mod 2)[/tex]
So
[tex]10^m \equiv 4 (\mod 6)[/tex]
[tex]a_m 10^m \equiv 4 a_m (\mod 6)[/tex]
[tex]\sum_{m=1}^n a_m 10^m \equiv 4 \sum_{m=1}^n a_m (\mod 6)[/tex]
[tex]a_0+\sum_{m=1}^n a_m 10^m \equiv a_0+4 \sum_{m=1}^n a_m (\mod 6)[/tex]
 
Last edited:
  • Like
Likes Delta2

What is the proof that 6 divides any integer N?

The proof for this statement is based on the fact that 6 is a multiple of 2 and 3. Therefore, any integer N can be expressed as N = 2k or N = 3k, where k is also an integer. This means that N is divisible by both 2 and 3, and thus, divisible by 6.

Can you provide an example to illustrate this proof?

Sure, let's take the integer N = 12. We can express 12 as 12 = 2 * 6, where k = 6. This shows that 12 is divisible by 2. We can also express 12 as 12 = 3 * 4, where k = 4. This shows that 12 is divisible by 3. Therefore, 12 is divisible by both 2 and 3, and thus, divisible by 6.

Is 6 the only number that can divide any integer N?

No, there are other numbers that can divide any integer N. For example, 1 and the integer itself can always divide N. In addition, any number that is a multiple of all the prime factors of N can also divide N. However, 6 is the smallest positive integer that can divide any integer N.

Is this proof applicable to all types of integers?

Yes, this proof is applicable to all types of integers, including positive, negative, and zero.

Why is this proof important in mathematics?

This proof is important because it helps us understand the concept of divisibility and the relationship between different numbers. It also serves as a foundation for many other mathematical concepts and proofs.

Similar threads

  • Precalculus Mathematics Homework Help
Replies
6
Views
1K
  • Precalculus Mathematics Homework Help
Replies
2
Views
932
  • Precalculus Mathematics Homework Help
Replies
1
Views
818
  • Precalculus Mathematics Homework Help
Replies
7
Views
1K
  • Precalculus Mathematics Homework Help
Replies
6
Views
1K
  • Precalculus Mathematics Homework Help
Replies
5
Views
1K
  • Precalculus Mathematics Homework Help
Replies
3
Views
676
  • Precalculus Mathematics Homework Help
Replies
3
Views
804
  • Precalculus Mathematics Homework Help
Replies
7
Views
1K
  • Precalculus Mathematics Homework Help
Replies
14
Views
970
Back
Top