Put the eigenvalue function in self-adjoint form

GGGGc
Homework Statement
The original equation is -(1-x^(2))y’’+xy’=ky. How to put it in self-adjoint form?
Also, if let x=cos(theta) how to put that form in d^(2)y/dx^(2)=-ky form?
Relevant Equations
-(1-x^(2))y’’+xy’=ky
Here’s my work:
The integrating factor I find is (x^(2)-1)^1/2. The self adjoint form I find is
-d/dx (((1-x^(2))^(3/2))*dy/dx))=k(x^(2)-1)^(1/2).
Am I right?
 
Physics news on Phys.org
The left hand side is of the form <br /> -u^2y&#039;&#039; - uu&#039;y&#039; = -u(uy&#039;)&#039; for some u.
 
GGGGc said:
Homework Statement: The original equation is -(1-x^(2))y’’+xy’=ky. How to put it in self-adjoint form?
Also, if let x=cos(theta) how to put that form in d^(2)y/dx^(2)=-ky form?
Relevant Equations: -(1-x^(2))y’’+xy’=ky

Here’s my work:
The integrating factor I find is (x^(2)-1)^1/2. The self adjoint form I find is
-d/dx (((1-x^(2))^(3/2))*dy/dx))=k(x^(2)-1)^(1/2).
Am I right?
Please use ## ## tags and code to render Latex
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top