Riemann Tensor knowing Christoffel symbols (check my result)

In summary: X\ddot{}_Y)##.This is only true for vector fields that commute (such as the holonomic basis vectors). If the fields do not commute the loop does not close and you need to add a contribution from going along the curve that closes the loop, proportional to the commutator of the fields.
  • #1
Confused Physicist
14
0
I need to find all the non-zero components of the Riemann Tensor in a two-dimensional geometry knowing that the only two non-zero components of the Christoffel symbols are:

[tex]\Gamma^x_{xx}=\frac{1}{x}[/tex] and [tex]\Gamma^y_{yy}=\frac{2}{y}[/tex]

knowing that: [tex]R^\alpha_{\beta\gamma\delta}=\partial_\gamma \Gamma^\alpha_{\delta\beta}-\partial_\delta \Gamma^\alpha_{\gamma\beta}+\Gamma^\epsilon_{\delta\beta}\Gamma^\alpha_{\gamma\epsilon}-\Gamma^\epsilon_{\gamma\beta}\Gamma^\alpha_{\delta\epsilon}[/tex]

The result I have obtained is that all the components of the Riemann curvature tensor are zero. Is this correct? If it is, what does it mean that all the components are zero?

MY PROCEDURE HAS BEEN:

the only plausible non-zero components of the Riemann curvature tensor are:
[tex]R^\alpha_{\beta\gamma\delta}=\partial_\gamma \Gamma^\alpha_{\delta\beta}-\partial_\delta \Gamma^\alpha_{\gamma\beta}+\Gamma^x_{\delta\beta}\Gamma^\alpha_{\gamma x}+\Gamma^y_{\delta\beta}\Gamma^\alpha_{\delta y}-\Gamma^x_{\gamma\beta}\Gamma^\alpha_{\delta x}-\Gamma^y_{\gamma\beta}\Gamma^\alpha_{\delta y}[/tex]

[tex]\alpha=x\quad:\quad R^x_{\beta\gamma\delta}=\partial_\gamma \Gamma^x_{\delta\beta}-\partial_\delta \Gamma^x_{\gamma\beta}+\Gamma^x_{\delta\beta}\Gamma^x_{\gamma x}+\Gamma^y_{\delta\beta}\Gamma^x_{\delta y}-\Gamma^x_{\gamma\beta}\Gamma^x_{\delta x}-\Gamma^y_{\gamma\beta}\Gamma^x_{\delta y}[/tex]

[tex]\text{ }\quad\quad \Longrightarrow \quad R^x_{xxx}=\partial_x \Gamma^x_{xx}-\partial_x \Gamma^x_{xx}+\Gamma^x_{xx}\Gamma^x_{xx}+\Gamma^y_{xx}\Gamma^x_{xy}-\Gamma^x_{xx}\Gamma^x_{xx}-\Gamma^y_{xx}\Gamma^x_{xy}=0[/tex]

[tex]\alpha=y\quad:\quad R^y_{\beta\gamma\delta}=\partial_\gamma \Gamma^y_{\delta\beta}-\partial_\delta \Gamma^y_{\gamma\beta}+\Gamma^x_{\delta\beta}\Gamma^y_{\gamma x}+\Gamma^y_{\delta\beta}\Gamma^y_{\delta y}-\Gamma^x_{\gamma\beta}\Gamma^y_{\delta x}-\Gamma^y_{\gamma\beta}\Gamma^y_{\delta y}[/tex]

[tex]\text{ }\quad\quad \Longrightarrow \quad R^y_{yyy}=\partial_y \Gamma^y_{yy}-\partial_y \Gamma^y_{yy}+\Gamma^y_{yy}\Gamma^y_{yx}+\Gamma^y_{yy}\Gamma^y_{yy}-\Gamma^y_{yy}\Gamma^y_{yx}-\Gamma^y_{yy}\Gamma^x_{yy}=0[/tex]

Therefore, all the components of the Riemann Tensor are zero.Thanks!
 
Last edited:
Physics news on Phys.org
  • #2
Same comment as on your other thread.
 
  • Like
Likes Confused Physicist
  • #3
Your conclusion is correct and your argument holds. However, your argument would be made more concise if, instead of checking the cases for ##\alpha##, you used the antisymmetry of the curvature in the two last indices.
Confused Physicist said:
If it is, what does it mean that all the components are zero?

Are you familiar with the geometrical interpretation of the curvature tensor?
 
  • Like
Likes Confused Physicist
  • #4
Orodruin said:
Are you familiar with the geometrical interpretation of the curvature tensor?

No, not really. Could you illustrate it for me? Thank you!
 
  • #5
How was the curvature tensor introduced to you?
 
  • Like
Likes Confused Physicist
  • #6
Orodruin said:
How was the curvature tensor introduced to you?

Purely mathematical. Two years ago I took a course on differential geometry. It wasn't until this year I started studying General Relativity, but I'm learning it on my own.
 
  • #7
Confused Physicist said:
Purely mathematical.
This does not help. Geometry (also differential geometry) is a mathematics subfield so I would think even a ”pure maths” intro would mention the geometrical interpretation. The question I am asking is how it was presented to you.
 
  • Like
Likes Confused Physicist
  • #8
Orodruin said:
This does not help. Geometry (also differential geometry) is a mathematics subfield so I would think even a ”pure maths” intro would mention the geometrical interpretation. The question I am asking is how it was presented to you.

It was presented to me by its deffinition with Christoffel symbols. I was never explained the physical meaning behind it (geometrical meaning) to help me imagine it.
 
  • #9
Now that is just bad teaching. The curvature tensor is related to the change of a vector that is parallel transported around a loop. This should be discussed in any introductory text on differential geometry.
 
  • Like
Likes Confused Physicist
  • #10
See e.g. chapter 3 of Carroll's notes,

https://arxiv.org/abs/gr-qc/9712019

page 74 (eqn. 3.63) and 75 (eqn.3.65). In short, the Riemann tensor tells you how the orientation of a vector parallelly transported around an infinitesimal loop is changed. This is expressed as the commutator of the two corresponding covariant derivatives. To go with Orodruin, it's hard for me to believe you've never seen this definition; it's like teaching calculus and integration without mentioning the Riemann sum or definition of a derivative.
 
  • Like
Likes Confused Physicist
  • #11
haushofer said:
This is expressed as the commutator of the two corresponding covariant derivatives
This is only true for vector fields that commute (such as the holonomic basis vectors). If the fields do not commute the loop does not close and you need to add a contribution from going along the curve that closes the loop, proportional to the commutator of the fields. The full expression is ##R(X,Y)Z = (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z##.
 
  • Like
Likes Confused Physicist
  • #12
Yes, I was a bit too implicit.
 
  • Like
Likes Confused Physicist
  • #13
Orodruin said:
This is only true for vector fields that commute (such as the holonomic basis vectors). If the fields do not commute the loop does not close and you need to add a contribution from going along the curve that closes the loop, proportional to the commutator of the fields. The full expression is ##R(X,Y)Z = (\nabla_X\nabla_Y - \nabla_Y\nabla_X - \nabla_{[X,Y]})Z##.

@haushofer was talking about parallel-transporting vectors, not vector fields. Can we equally well take parallel transport of vectors to be fundamental, and define covariant derivatives of vector fields in terms of parallel transport, or take covariant derivatives of vector fields as fundamental and define parallel transport of vectors in terms of that?
 
  • #14
stevendaryl said:
@haushofer was talking about parallel-transporting vectors, not vector fields
This is a bit of a funny point. In order for ##\nabla_X Z## and ##[X,Y]## to be defined, ##X, Y, Z## need to be vector fields. However, the properties of the objects actually result in the curvature depending only on the vectors at the point in question (if not, it would not be a tensor). Either way, the parallel transport is of a vector ##Z## around a loop spanned by ##X## and ##Y##.

stevendaryl said:
Can we equally well take parallel transport of vectors to be fundamental, and define covariant derivatives of vector fields in terms of parallel transport, or take covariant derivatives of vector fields as fundamental and define parallel transport of vectors in terms of that?
Are you asking if the parallel transport equations have a one-to-one correspondence with the connection? The answer to that question is yes. If you know how vectors behave under (all possible) parallel transports, then you know what the connection is, since you will know (in particular) ##\nabla_{\dot\gamma}X## for all curves ##\gamma## and all fields ##X## along ##\gamma##.
 
  • #15
Orodruin said:
This is a bit of a funny point. In order for ##\nabla_X Z## and ##[X,Y]## to be defined, ##X, Y, Z## need to be vector fields.

It seems to me that ##\nabla_X Z## only requires that ##Z## be a vector field, not ##X##.
 
  • #16
stevendaryl said:
It seems to me that ##\nabla_X Z## only requires that ##Z## be a vector field, not ##X##.
Yes, unfortunate formulation, but in the definition of the curvature, all fields have derivatives acting on them and therefore need to be fields. The point is it does not matter what the fields are as long as they agree with the corresponding vectors at the relevant point.
 
  • #17
Orodruin said:
Yes, unfortunate formulation, but in the definition of the curvature, all fields have derivatives acting on them and therefore need to be fields. The point is it does not matter what the fields are as long as they agree with the corresponding vectors at the relevant point.

I would say that the definition of curvature in terms of covariant derivatives requires all three arguments to be vector fields. But if you define curvature in terms of parallel transport, they don't need to be vector fields, it seems to me.
 
  • #18
stevendaryl said:
I would say that the definition of curvature in terms of covariant derivatives requires all three arguments to be vector fields. But if you define curvature in terms of parallel transport, they don't need to be vector fields, it seems to me.
Well, the point is that the curvature tensor is a tensor. It does not depend on the vectors it take being fields. You can extend the vectors ##XYZ## to arbitrary vector fields at will and ##R(X,Y)Z## will still be the same. As such, it is clear that the definition of the curvature tensor only requires vectors in ##T_p M##, not sections of ##TM##. However, expressing the tensor in terms of the commutator of the covariant derivatives, as done in #10, does require the extension of ##XYZ## to sections (even if the actual extensions are irrelevant). Either way, the parallel transport - connection link is there.
 

1. What is the Riemann Tensor?

The Riemann Tensor is a mathematical object that describes the curvature of a space. It is used in the field of differential geometry to study the geometry of curved spaces, such as those found in general relativity.

2. How is the Riemann Tensor related to Christoffel symbols?

The Riemann Tensor can be expressed in terms of the Christoffel symbols, which are a set of coefficients used to describe the curvature of a space. The Christoffel symbols are used to calculate the Riemann Tensor, providing a way to understand the curvature of a space in terms of its geometry.

3. What is the significance of knowing both the Riemann Tensor and Christoffel symbols?

Knowing both the Riemann Tensor and Christoffel symbols is important for understanding the geometry of a space and how it can be curved. This knowledge is essential in fields such as general relativity, where the curvature of space plays a crucial role in the behavior of matter and energy.

4. How do the Riemann Tensor and Christoffel symbols relate to the concept of parallel transport?

The Riemann Tensor and Christoffel symbols are used in the study of parallel transport, which is the movement of a vector or tensor along a curved path without changing its direction. The Christoffel symbols are used to calculate the change in the vector's direction, while the Riemann Tensor describes the curvature of the space along the path.

5. How are the Riemann Tensor and Christoffel symbols used in physics?

The Riemann Tensor and Christoffel symbols are used extensively in the field of physics, particularly in general relativity and cosmology. They are used to understand the behavior of matter and energy in the presence of curved space, and to make predictions about the behavior of the universe on a large scale.

Similar threads

  • Differential Geometry
Replies
3
Views
3K
Replies
6
Views
2K
  • Special and General Relativity
Replies
10
Views
1K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
6
Views
5K
  • Advanced Physics Homework Help
Replies
1
Views
2K
  • Classical Physics
Replies
3
Views
1K
  • Special and General Relativity
Replies
5
Views
1K
  • Special and General Relativity
Replies
14
Views
3K
  • Special and General Relativity
Replies
12
Views
2K
  • Advanced Physics Homework Help
Replies
8
Views
3K
Back
Top