Rotation of macroscopic magnetization = average (Magnetization current density)

LeoJakob
Messages
24
Reaction score
2
Thread moved from the technical forums to the schoolwork forums
Homework Statement
rotation of macroscopic magnetization = averege (Magnetization current density )
Relevant Equations
##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##

,## \vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}##

,##\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}##

, ##\vec{\nabla} \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \vec{\nabla}) \vec{A}-\vec{B}(\vec{\nabla} \cdot \vec{A})+\vec{A}(\vec{\nabla} \cdot \vec{B})-(\vec{A} \cdot \vec{\nabla}) \vec{B} ##
In the headline to the question the statement should have been:
rotation of macroscopic magnetization = averege (Magnetization current density )

The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

Proof:
$$
\vec{\nabla} \times \vec{M}=\overline{\vec{j}_{mag}}
$$

Attempt
$$\begin{array}{l}\vec{\nabla} \times \vec{M}=\vec{\nabla} \times\left(\frac{1}{V} \sum \limits_{i=1}^{N} \vec{m}_{i}\right) \\ =\frac{1}{V} \vec{\nabla} \times\left(\sum \limits_{i=1}^{n} \frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \partial^{3} \vec{r}^{\prime}\right) \\ =\frac{1}{2 V} \sum \limits_{i=1}^{n} \underbrace{\vec{\nabla} \times\left(\left(\overrightarrow{r^{\prime}}-\overrightarrow{R_{i}}\right) \times \overrightarrow{j_{\text {mag }}^{(i)}}\left(\overrightarrow{r^{\prime}}\right)\right)}_{=(i)} d^{3} \vec{r}^{\prime} \\
= ?\end{array}$$

$$
\begin{array}{l}(i)=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\ +\left(\vec{r}^{\prime}-\vec{R}_{i}\right)(\underbrace{\vec{\nabla} \cdot \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)}_{=0})-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right)
\\
\\
=\left(\vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \cdot \vec{\nabla}\right)\left(\vec{r}^{\prime}-\vec{R}_{i}\right)- \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \left(\vec{\nabla} \cdot\left(\vec{r}^{\prime}-\vec{R}_{i}\right)\right) \\
-\left[\left(\vec{r}^{\prime}-\overrightarrow{R_{i}}\right) \cdot \vec{\nabla}\right] \vec{j}_{\text {mag }}^{(i)}\left(\vec{r}^{\prime}\right) \end{array} $$

I don’t have more ideas right now, can someone help me?
 
Last edited:
Physics news on Phys.org
LeoJakob said:
The Magnetization current densities ##\vec{j}_{\text{mag}}^{(i)}## of individual particles ##i## are stationary ##(\vec{\nabla} \cdot \vec{j}_{\text{mag}}^{(i)}=0##) and generate the magnetic moments
$$
\vec{m}_{i}=\frac{1}{2} \int\left(\vec{r}^{\prime}-\vec{R}_{i}\right) \times \vec{j}_{mag}^{(i)}\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}
$$
at the locations##\vec{R}_{i}##. Analogous to the macroscopic electric polarization, introduce the macroscopic magnetization as the average magnetic dipole moment per mesoscopic volume ##v##:
$$
\vec{M}(\vec{r})=\frac{1}{v} \sum_{i=1}^{N} \vec{m}_{i}
$$

As indicated, ##\vec M (\vec r)## is a function of the position vector ##\vec r## for a point in the medium. So, the right-hand side of the above equation for ##\vec M(\vec r)## must be a function of ##\vec r##. Note, however, that ##\vec m_i## for the magnetization of the ##i^{th}## particle located at ##\vec R_i## does not depend on the vector ##\vec r##.

However, the expression ##\frac 1 v \sum_{i=1}^N \vec m_i## does depend on ##\vec r## because the “mesoscopic” volume ##v## is assumed to be centered on ##\vec r##. The sum is over all particles located in ##v##. So, the sum does depend on ##\vec r## even though ##m_i## for a particular particle does not depend on ##\vec r##.

When forming the curl (“rotation”) of ##\vec M(\vec r)##, the derivative operators are derivatives with respect to the components of ##\vec r##. These derivative operators do not act on ##\vec r’## appearing in the expression for ##\vec m_i##.

The change in ##\vec M(\vec r)## for a small change ##\vec {dr}## in ##\vec r## is due to shifting the location of the volume ##v## by ##\vec {dr}## and performing the sum ##\sum_{i= 1}^N \vec m_i## over the particles in this shifted volume.

So, it’s pretty tricky. The text says “Analogous to the macroscopic electric polarization, introduce the macroscopic magnetizarion…”. Perhaps the textbook has already done a similar calculation for electric polarization ##\vec P(\vec r)## in deriving ##\vec{\nabla} \cdot \vec P(\vec r) = - \rho_{\text {pol}}(\vec r)##, where ##\rho_{\text {pol}}## is the polarization charge density. If so, it might be helpful to study this derivation before tackling the magnetization problem.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top