MHB Solving Logarithmic Equations: Expert Help with Different Bases

  • Thread starter Thread starter lastochka
  • Start date Start date
  • Tags Tags
    Logarithmic
AI Thread Summary
To solve the equation ${2}^{2x+19}={3}^{x-31}$, taking the natural logarithm of both sides is essential. By applying the logarithmic identity, the equation transforms into $(2x+19)\ln(2)=(x-31)\ln(3)$. After correctly distributing the logarithms and rearranging, the solution for x is derived as $x=\frac{-31\ln(3)-19\ln(2)}{2\ln(2)-\ln(3)}$. The final computed value of x is approximately -164.163, confirming the solution's accuracy. This method effectively addresses logarithmic equations with different bases.
lastochka
Messages
29
Reaction score
0
Hello,

I am trying to solve this, but the bases are different and I am not sure how to proceed with it...
Solve the following equation. If necessary, enter your answer as an expression involving natural logarithms or as a decimal approximation that is correct to at least four decimal places.

${2}^{2x+19}$=${3}^{x-31}$

Please, help!
Thank you
 
Mathematics news on Phys.org
Try taking the natural log of both sides, then apply the rule:

$$\log_a\left(b^c\right)=c\log_a(b)$$

What do you get...can you now solve for $x$?
 
Thank you for the answer, but I am still not sure...
Here is what I did
$\ln\left({{2}^{2x+19}}\right)$=$\ln\left({{3}^{x-31}}\right)$

2x+19$\ln\left({2}\right)$=x-31$\ln\left({3}\right)$

x=$\frac{-31$\ln\left({3}\right)}{-19$\ln\left({2}\right)}$

x=2.58599

But the answer is incorrect.
Please, let me know what am I doing wrong
 
Okay, after applying the log rule I posted, you should have:

$$(2x+19)\ln(2)=(x-31)\ln(3)$$

Upon distribution of the logs, you then get:

$$2x\ln(2)+19\ln(2)=x\ln(3)-31\ln(3)$$

Now try solving for $x$...:D
 
Yes, thank you! I just realized that I didn't do another step...must be tired...
Here what I have so far
2lnx-xln3=-31ln3-19ln2

x(2ln2) - (ln3)=-31ln3-19ln2

x=$\frac{-31ln3-19ln2}{2ln2-ln3}$

x=-164.163

I checked, the answer is right.
MarkFL, thank you so much for help!
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top