Stream channels as a indication of fault movement

In summary: There once must have been a giant vertical split that "swallowed" a large amount of mountain. But I'm not sure whether it can be seen this way.
  • #1
davenn
Science Advisor
Gold Member
2023 Award
9,590
10,269
I was zooming around the NE region of the South Island of New Zealand in Google Earth today and discovered a classic example of offset stream channels across a major fault, the Awatere Fault.

The Awatere Fault which is one of the major faults that the Alpine fault splinters into in the upper South Island. It's companions are the Wairau Fault -- the direct continuation of the Alpine Fault; The Clarence Fault and the Hope Fault. These 4 major faults all run parallel to each other and between them release the tectonic stresses that build up along this section of the Australian and Pacific plate boundary.

The image below shows offsets of streams and ridgelines

Awatere Fault stream channels.JPG


The yellow arrows clearly mark the direction of the fault trace
Two obvious ridge offsets are marked A--A and B--B
The upper side B ends in a steep bank at the fault trace.
1, 2, 3 lines mark a stream offset from the blue line on the upper side of the trace.
I suspect some of the other stream channels to the left of the # 1, are quite possibly even earlier offsets

For anyone interested in looking at the bigger/clearer image in Google earth. The coordinates are
41.779398 S 173.785685 EDave
 
Last edited:
  • Like
Likes mfb, anorlunda, BillTre and 5 others
Earth sciences news on Phys.org
  • #2
Is there actually a difference in composition/soil make-up? Or, to paraphrase, what's the actual offset (miles, or kilometers)?
 
  • #3
Bystander said:
Is there actually a difference in composition/soil make-up? Or, to paraphrase, what's the actual offset (miles, or kilometers)?
The sets of offsets shown above are in the order of 10's of meters and not necessarily all in the one event
Using the roughly , approximately accurate :wink: measuring in google Earth is showing about 200 metres between each of 1 -->2 -->3

now, I know of no quake that has produced a 200m offset, so these would have been a progress of several large events over a very long period of time

10 - 15m offset is typical for very large quakes, > M 8

I haven't studies the specific makeup of the rocks of this region other than knowing they would mainly be metamorphosed seafloor sediments that have been uplifted by the tectonics in the region.Dave
 
  • Like
Likes fresh_42
  • #4
I had difficulties to interpret the offsets in A--A and B--B compared to other ones (1,2,3), because of their significant difference, while at the same time the shape of the mountains below and above the fault looks like there is missing something big on the upper part. But maybe I didn't understand the termini well enough.
 
  • #5
Just trying to match the "geological character" in terms of "general morphology" and compare it to the more recent "track." The light/shadow boundary is really pronounced.
 
  • #6
fresh_42 said:
I had difficulties to interpret the offsets in A--A and B--B compared to other ones (1,2,3), because of their significant difference, while at the same time the shape of the mountains below and above the fault looks like there is missing something big on the upper part. But maybe I didn't understand the termini well enough.

Bystander said:
Just trying to match the "geological character" in terms of "general morphology" and compare it to the more recent "track." The light/shadow boundary is really pronounced.

OK I will zoom in on that area a bit ... the resolution of GE is pretty crappy when zoomed in too far ...

Fig.1

trace and ridge offsets.JPG


Fig. 2
a drawing view looking along the fault from lower left to upper right
with these ridges and with the streams, it is important to consider the erosion process as they smooth off the ridge and water channel features.

Ridge separation and erosion.GIF
hope that helps with the visualisation of what is happening ?
NOTE: the slope of the fault is correct for what is happening in the region. The slope will be close to correct to within a few degrees. The major faults in this area are reasonably steeply dipping to the eastDave
 
Last edited:
  • #7
Thank you for your explanation and pardon me for the trouble I made. What I couldn't get is, why the horizontal displacement at A and B is so much more than those at 1,2,3. Shouldn't there be more rock between B and 1 on the upper part? Or alternatively: there once must have been a giant vertical split that "swallowed" a large amount of mountain. But I'm not sure whether it can be seen this way.
 
  • #8
fresh_42 said:
Thank you for your explanation and pardon me for the trouble I made

no probs. :smile: ask away, I will soon say if it's something I cannot answer

fresh_42 said:
What I couldn't get is, why the horizontal displacement at A and B is so much more than those at 1,2,3.

Consider that stream evolution/creation is a much faster process than that of the formation of the mountain ridges so as a result
there will be more stream channels cut during the same period of time.
With the ridge, pick either of the two marked ones ( there are others also), the ridge doesn't reform after it has been separated. The two sections just continue to move further apart with each successive quake. Where as the stream section on the uphill side of the fault is continuing to rebuild its channels across the fault.
And with every fault motion, the channel gets rebuilt

did that clear the observation ?

Dave
 
  • Like
Likes fresh_42
  • #9
davenn said:
did that clear the observation ?
Yes indeed, and pretty impressive. The only other fault I've seen so far (on TV) has been the one through Island between the North-American and the Eurasian plate. I wonder whether there are long-term prognoses considering NZ (before the entire landmass will build a next super-continent once more). Will the southern island be drawn apart or will only the mountains get higher?
 
  • #10
fresh_42 said:
The only other fault I've seen so far (on TV) has been the one through Island between the North-American and the Eurasian plate.

ahhhh Iceland, now that is a different whole ball game. Iceland is on a spreading ridge, namely the Mid-Atlantic Ridge.
The MAR consists of primarily of spreading ridges interspersed with transform ( strike-slip ) fault zones.

Fig.1
overall tectonic motion of Iceland
red dotted line is the approx. location of the spreading ridge
blue arrows indicate the relative motion of the land away from the ridge axis
This results in Iceland slowly getting wider and wider

iceland.jpg
Fig.2
spreading and transform fault zones of the Mid-Atlantic Ridge
A section of the ridge roughly due east of Bermuda

Transform and spreading zones MAR.JPG


the thin yellow arrows indicate the transform (strike-slip) faults
the thick half arrows indicate the relative motion on each sine of those faults
the blue arrows indicate the overall motion of the spreading sections

Overall tectonics of New Zealand in the next post...
 
Last edited:
  • Like
Likes fresh_42
  • #11
fresh_42 said:
I wonder whether there are long-term prognoses considering NZ (before the entire landmass will build a next super-continent once more). Will the southern island be drawn apart or will only the mountains get higher?
Mountain building in the South Is's Southern Alps is still an active and ongoing process. The movement along the main section of the Alpine Fault is an approx. 3:1 ratio, that is, for every 3 metres of horizontal movement, there is 1 metre of vertical movement. These figures immediately tell us that AP isn't a pure strike-slip nor is it a pure thrust type of fault, rather it is an oblique slip fault with the main part of the motion being a strike-slip.

Not knowing the level of geology knowledge of those reading this, just a little diversion on fault motions/types ...

Fig.1
Note the angle/direction of the slope of the fault plane arbitrary as they can vary greatly

Fault types1.GIF
OK, let's continue... This will be a general overview of tectonics in New Zealand unless more detail is asked for

Even on a large scale, the tectonics of the Pacific and Australian plate boundary, that New Zealand sits astride, is quite complex. Referring to Fig.2 below and starting with the North Island, it can be seen that all of the Nth Is. sits on the Australian Plate and that the Pacific Plate is subducting be low it. Plate motions are quite significant in this region at around 50 - 60mm / year and since this isn't a continuous movement at the main fault interface, it means that there is an ongoing build-up of stress that is released in periodic large quakes.
As noted on the diagram, the volcanic plateau is a region of extensional faulting as the region is stretched. This thins the crust significantly and accounts for the large amount of volcanic activity of the region. The volcanoes are fed by the melted oceanic floor of the Pacific Plate as it sub-ducts to the 300 - 600km depth.
The southern section of the North Island is noted for its long parallel faults which are an "assumed" continuation of the same series of parallel faults of the NE South Island.
The last major fault in this region to have moved was the West Waiararapa Fault which is the eastern most of the faults. That event occurred in 1855 and had an estimated magnitude of M8.1. This was calculated from the damage and the offsets on the fault (12m horizontal and 7m vertical)

Fig.2
courtesy of GNS
upload_2017-1-8_16-8-26.png


Fig.3
Cross-section, West to East, across the centre of the Nth Is.

Nth Is X-section.GIF
As we move down into the South Is., the complexity of the tectonics increases somewhat.
The NE corner of the island is dominated by a series of major parallel faults. From west to east, the Wairau Fault, the Awatere Fault, the Clarence Fault and the Hope Fault. These are all splay faults of the main Alpine Fault to the south-west and runs down the backbone of the South Is..
These NE faults are all oblique thrust faults produced by the steep subduction of the Pacific Plate under the region, see Fig.4

Fig.4
courtesy of GNS
Subduction nthrn Sth Is.GIF


The major subduction boundary is along the eastern most fault, the Hope Fault and its smaller associated ones. These were the primary source of the recent M 7.8 event in Nov. 2016. All land/crust to the west of the Hope Fault is part of the Australian Plate. As shown in the offset streams and ridges in the first post of this thread, it is not a pure thrust regime as there is also horizontal offset.

Moving SW into the main Alpine Fault Zone, the thrust direction completely reverses and now the Pacific Plate is riding up and over the Australian Plate. This is an oblique slip system, with the mentioned earlier, 3 : 1 ratio of strike slip to reverse thrust. Here is a cross-section across the central South Island

Fig.5

Sth Is X-section.GIF
Finally down into the SW corner of the South Island. The tectonics again reverse to a subduction zone. The Alpine Fault has now left land and is a km or two offshore and parallels the shore till it leaves the New Zealand region and continues down towards Macquarie Island. The offshore plate boundary is primarily a steeply dipping reverse thrust where the Australian Plate is subducting under the SW corner of the South Island.

Fig.6
Shows earthquakes on that steeply dipping fault zone
courtesy of GNS

19930810 M72 Fiord2.jpg
As can be seen, the active subduction zone goes down to around 150 km, substantially less than the 600 km under the North Island.I will leave it at that for this post. It has covered a fair bit of information

feel free to ask more questions or for any clarifications
Dave

PS ... @fresh_42 ... out of curiosity, if you don't mind telling ... where are you located ? just country ?
 
Last edited:
  • Like
Likes 1oldman2, Greg Bernhardt and fresh_42
  • #12
davenn said:
is an approx. 3:1 ratio, that is, for every 3 metres of horizontal movement, there is 1 metre of vertical movement.
:wideeyed::)) Epiphany. Thank you. Thank you. Thank you. It's obvious, but I never thought of it in that way ... seen it in "slickensides" in slumps all the time when out "fossiling" in my spare/hobby/volunteer/conscript time, but never put two and two together.
 
  • Like
Likes davenn and fresh_42
  • #13
Bystander said:
:wideeyed::)) Epiphany. Thank you. Thank you. Thank you. It's obvious, but I never thought of it in that way ... seen it in "slickensides" in slumps all the time when out "fossiling" in my spare/hobby/volunteer/conscript time, but never put two and two together.

no problem :smile:

I wonder if you have read the finished post ?

and @fresh_42Dave
 
  • #14
davenn said:
no problem :smile:

I wonder if you have read the finished post ?

and @fresh_42Dave
Now I have. Many thanks, that's been a marvelous lesson on the tectonic situation there. I never would have thought it to be so complex. I always thought it to be like the Himalayan or the Alps here, but it seems to be more of a lab situation for geologists where many of different phenomena can be studied in a relatively small area. :ok::thumbup:
 
  • #15
fresh_42 said:
but it seems to be more of a lab situation for geologists where many of different phenomena can be studied in a relatively small area
indeed, that's why I enjoy doing geology in NZ :smile:
 
  • #16
Dave, Is there a craton somewhere in NZ's formation, or is it all of volcanic formation?
 
  • #17
Sanborn Chase said:
Dave, Is there a craton somewhere in NZ's formation, or is it all of volcanic formation?

I have never heard the word craton used when describing NZ geology
Cratons are usually more associated with the very old and stable cores of continents and usually well away from the plate boundaries

NZ's history on the other hand, has been very tumultuous with several in-dispersed periods of sedimentation and mountain building.

you may find this of interest to read as a general overview ...
http://sci.waikato.ac.nz/evolution/geologicalHistory.shtmlcheers
Dave
 
  • Like
Likes Sanborn Chase and 1oldman2
  • #21
"
Sanborn Chase said:
As in "The Wizard of..."?

hahaha, no :biggrin:

as in Australia, where I now reside ... Oz, Aussie, The land down under, are the 3 very common slang terms for Australia

Ohhhh " The great southern land" is another
 
  • Like
Likes 1oldman2
  • #22
Sanborn Chase said:
As in "The Wizard of..."?
Definitely not in Kansas anymore. :wink:
 
  • #23
1oldman2 said:
Definitely not in Kansas anymore. :wink:
But as far as I can judge from the map on Wikipedia, there might be a craton in Kansas. Hard to tell, it's close.
 
  • Like
Likes 1oldman2
  • #24
fresh_42 said:
there might be a craton in Kansas.
Getting back on topic, is there a "minimum sized crumb" of crustal material below which one no longer speaks of cratons?
 
  • #25
http://all-geo.org/metageologist/2012/12/cratons-old-and-strong/

Here is a very clear explanation.
If lithospheric mantle beneath cratons was the same composition as the rest of the mantle then over time it would cool and become denser and unstable. A consensus has emerged that it does not because at some point in the past it was involved in melting and up to half of its volume was removed. The rock left behind after the melt flowed away is known as depleted peridotite and it is stronger and more buoyant than normal mantle, so it remains stable for billions of years.

So no, the map the shows pretty small areas. If you are asking is there an alternate correct term for mini-craton, then first you have to find a tiny shield that goes down to well into the mantle and is small. I do not know one. I also do not know if such exists.
 
  • Like
Likes 1oldman2 and Sanborn Chase
  • #26
jim mcnamara said:
http://all-geo.org/metageologist/2012/12/cratons-old-and-strong/

Here is a very clear explanation.So no, the map the shows pretty small areas. If you are asking is there an alternate correct term for mini-craton, then first you have to find a tiny shield that goes down to well into the mantle and is small. I do not know one. I also do not know if such exists.
As always, thanks Mr. McNamara. Incidentally, is there not a craton associated with the formation of Australia?
 
  • #27
Sorry. I hadn't punched the link you kindly gave me. It answered my question.
 
  • #28
Sanborn Chase said:
Incidentally, is there not a craton associated with the formation of Australia?

I gave several links to them on page 1 of the thread when I answered your previous Q about them
 

1. How do stream channels indicate fault movement?

Stream channels can indicate fault movement through various observations such as changes in channel direction, shifts in elevation, and changes in sediment composition. Fault movement can also cause streams to be offset or diverted, resulting in a change in the stream's course.

2. What are some features of a stream channel that can suggest fault movement?

Some features that can suggest fault movement include sudden changes in stream direction, changes in the stream's gradient, and offset or offset bar patterns. Additionally, sediment deposits that are tilted or folded can indicate fault movement.

3. Can stream channels be used to determine the timing of fault movement?

Yes, stream channels can be used to determine the timing of fault movement. For example, if a stream channel has been offset by a fault, the age of the channel on either side of the fault can be compared to determine the timing of the fault movement.

4. How accurate is using stream channels as an indication of fault movement?

The accuracy of using stream channels as an indication of fault movement depends on several factors such as the age of the stream channel, the type of fault, and the amount of displacement. In some cases, other geological evidence and techniques may need to be used to confirm the presence of fault movement.

5. Are there any limitations to using stream channels to study fault movement?

Yes, there are limitations to using stream channels to study fault movement. These include the possibility of multiple fault movements causing similar changes in stream channels, the potential for stream channels to be affected by other geological processes, and the difficulty in accurately dating older stream channels.

Similar threads

Replies
3
Views
4K
Replies
7
Views
7K
  • Sci-Fi Writing and World Building
Replies
6
Views
2K
  • Sci-Fi Writing and World Building
Replies
2
Views
2K
  • Sci-Fi Writing and World Building
Replies
1
Views
3K
Back
Top