Symmetry regarding induced potentials?

  • #1
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
41,392
9,868
TL;DR Summary
Is it true that the potential arising at A from induced charges on conductor B from point charge q at C = that arising at C from induction on B from charge q at A?
A homework thread, https://www.physicsforums.com/threa...etal-sheet-along-a-spherical-surface.1057702/, references https://arxiv.org/pdf/1007.2175.pdf.
There is an uncharged conductor and a point charge. In the paper referenced, ##\bar\phi_y(x)## is defined as the potential at x due to the induced charges on the conductor when the point charge is at y.
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
 
Physics news on Phys.org
  • #2
Thank you for trying to clarify this point, I had already given up hope. But even if ##\bar\phi_x(y)=\bar\phi_y(x)## were true (assume this to be true for a moment, though it remains to be verified), what obvious relationship prompts the assertion that, since ##bar\phi_x(y)=\bar\phi_y(x)##, then ##\frac{q}{2} \nabla_x \phi_x(x) =- F(x)##?
 
  • #3
haruspex said:
As justification for eqn 10 it states that ##\bar\phi_x(y)=\bar\phi_y(x)##.
I cannot see why that should be true, but I cannot construct any counterexample.
Is it evident, or maybe some standard result?
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
 
  • Like
Likes PhDeezNutz, vanhees71 and haruspex
  • #4
TSny said:
This is an interesting result that can be deduced from Green's Reciprocity Theorem (see equation 5).
Darn, you just beat me to it! But I'll go ahead and post my response:
Start from two charge densities ##\rho_x,\rho_y## that give rise to two electrostatic potentials ##\phi_x,\phi_y## via Poisson's equation:$$\nabla^{2}\phi_{x}\left(z\right)=-\rho_{x}\left(z\right)/\varepsilon,\;\nabla^{2}\phi_{y}\left(z\right)=-\rho_{y}\left(z\right)/\varepsilon$$and suppose that the charge densities and fields vanish sufficiently fast at spatial infinity so that boundary terms are ignorable (in other words, the usual physicist's assumption!). Then Green's second identity (https://en.wikipedia.org/wiki/Green's_identities) can be written in terms of ##\phi_1,\phi_2## as:$$0=\int\left(\phi_{x}\left(z\right)\nabla^{2}\phi_{y}\left(z\right)-\phi_{y}\left(z\right)\nabla^{2}\phi_{x}\left(z\right)\right)d^{3}z=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)\rho_{x}\left(z\right)-\phi_{x}\left(z\right)\rho_{y}\left(z\right)\right)d^{3}z$$where the integration extends over all space. This result is known in electrostatics as Green's Reciprocity (https://en.wikipedia.org/wiki/Reciprocity_(electromagnetism)). Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
 
  • Like
Likes vanhees71 and TSny
  • #5
renormalize said:
Now specialize to point charges ##\rho_{x}\left(z\right)=q_{x}\delta^{3}\left(z-x\right),\;\rho_{y}\left(z\right)=q_{y}\delta^{3}\left(z-y\right)## located at positions ##x,y##:$$0=\varepsilon^{-1}\int\left(\phi_{y}\left(z\right)q_{x}\delta^{3}\left(z-x\right)-\phi_{x}\left(z\right)q_{y}\delta^{3}\left(z-y\right)\right)d^{3}z=\varepsilon^{-1}\left(q_{x}\phi_{y}\left(x\right)-q_{y}\phi_{x}\left(y\right)\right)$$In particular, if ##q_x=q_y## (as is apparently the case in the cited external reference), then the simple reciprocal relation ##\phi_{y}\left(x\right)=\phi_{x}\left(y\right)## indeed holds.
OK. But, besides the point charge, there will also be induced surface charge density on the conductor. So, the integration over ##\rho## should include integration over the surface of the conductor. However, you can show this integration equals zero using the fact that the conductor's surface is an equipotential surface and the net charge on the surface is zero.
 

1. How does symmetry affect induced potentials?

Symmetry plays a crucial role in determining the induced potentials in a system. In cases where the system exhibits symmetry, the induced potentials are often zero due to cancellation effects from opposite sides. On the other hand, asymmetrical systems may result in non-zero induced potentials.

2. Can symmetry be used to predict induced potentials?

Yes, symmetry can be a powerful tool in predicting induced potentials. By analyzing the symmetrical properties of a system, one can often determine the distribution of charges and currents that lead to induced potentials. This predictive capability can be particularly useful in designing systems with specific desired outcomes.

3. How does symmetry breaking impact induced potentials?

Symmetry breaking can significantly impact induced potentials by introducing asymmetry into the system. As a result, the cancellation effects that typically lead to zero induced potentials in symmetrical systems may no longer apply. This can lead to the generation of non-zero induced potentials, which can have important implications for the behavior of the system.

4. Are there any mathematical tools for analyzing symmetry in induced potentials?

Yes, there are several mathematical tools that can be used to analyze symmetry in induced potentials. For example, group theory provides a formal framework for understanding the symmetrical properties of a system and their implications for induced potentials. Additionally, symmetry operations and transformation matrices can be used to simplify the analysis of induced potentials in symmetrical systems.

5. Can symmetry be used to optimize induced potentials in a system?

Yes, symmetry can be leveraged to optimize induced potentials in a system. By designing the system to exhibit specific symmetrical properties, one can manipulate the distribution of charges and currents to minimize or maximize induced potentials as needed. This optimization process can lead to improved performance and efficiency in various applications.

Similar threads

Replies
11
Views
867
  • Electromagnetism
Replies
2
Views
963
  • Advanced Physics Homework Help
Replies
1
Views
2K
Replies
7
Views
1K
Replies
2
Views
6K
Replies
5
Views
2K
  • Introductory Physics Homework Help
Replies
5
Views
2K
Replies
15
Views
4K
  • Electromagnetism
Replies
4
Views
2K
  • Advanced Physics Homework Help
Replies
2
Views
9K
Back
Top