Three Papers on the Foundations of Evolution and Emergence by Diederik Aerts

  • Thread starter John86
  • Start date
  • Tags
    Papers
In summary, Diederik Aerts has submitted three papers on the foundations of the theory of evolution, potentiality states, and quantum probabilistic structures in competing lizard communities. Aerts suggests that evolution theory should not be limited to actual variation and selection, but also consider variation in potential based on context. He also introduces the concept of potentiality states, which can lead to emergence in different physical systems. Finally, Aerts and his colleagues show that a quantum probabilistic structure can model the mating competition of three side-blotched lizard morphs, and this result has implications for population dynamics.
  • #1
John86
257
9
Three papers by diederick Aerts.
Any ideas ?...

http://arxiv.org/abs/1212.0107
On the Foundations of the Theory of Evolution
Diederik Aerts, Stan Bundervoet, Marek Czachor, Bart D'Hooghe, Liane Gabora, Philip Polk, Sandro Sozzo
(Submitted on 1 Dec 2012)
Darwinism conceives evolution as a consequence of random variation and natural selection, hence it is based on a materialistic, i.e. matter-based, view of science inspired by classical physics. But matter in itself is considered a very complex notion in modern physics. More specifically, at a microscopic level, matter and energy are no longer retained within their simple form, and quantum mechanical models are proposed wherein potential form is considered in addition to actual form. In this paper we propose an alternative to standard Neodarwinian evolution theory. We suggest that the starting point of evolution theory cannot be limited to actual variation whereupon is selected, but to variation in the potential of entities according to the context. We therefore develop a formalism, referred to as Context driven Actualization of Potential (CAP), which handles potentiality and describes the evolution of entities as an actualization of potential through a reiterated interaction with the context. As in quantum mechanics, lack of knowledge of the entity, its context, or the interaction between context and entity leads to different forms of indeterminism in relation to the state of the entity. This indeterminism generates a non-Kolmogorovian distribution of probabilities that is different from the classical distribution of chance described by Darwinian evolution theory, which stems from a 'actuality focused', i.e. materialistic, view of nature. We also present a quantum evolution game that highlights the main differences arising from our new perspective and shows that it is more fundamental to consider evolution in general, and biological evolution in specific, as a process of actualization of potential induced by context, for which its material reduction is only a special case.

http://arxiv.org/abs/1212.0104
Potentiality States: Quantum versus Classical Emergence
Diederik Aerts, Bart D'Hooghe
(Submitted on 1 Dec 2012)
We identify emergence with the existence of states of potentiality related to relevant physical quantities. We introduce the concept of 'potentiality state' operationally and show how it reduces to 'superposition state' when standard quantum mechanics can be applied. We consider several examples to illustrate our approach, and define the potentiality states giving rise to emergence in each example. We prove that Bell inequalities are violated by the potentiality states in the examples, which, taking into account Pitowsky's theorem, experimentally indicates the presence of quantum structure in emergence. In the first example emergence arises because of the many ways water can be subdivided into different vessels. In the second example, we put forward a full quantum description of the Liar paradox situation, and identify the potentiality states, which in this case turn out to be superposition states. In the example of the soccer team, we show the difference between classical emergence as stable dynamical pattern and emergence defined by a potentiality state, and show how Bell inequalities can be violated in the case of highly contextual experiments.

http://arxiv.org/abs/1212.0109
Quantum Probabilistic Structures in Competing Lizard Communities
Diederik Aerts, Marek Czachor, Maciej Kuna, Barry Sinervo, Sandro Sozzo
(Submitted on 1 Dec 2012)
Almost two decades of research on the use of the mathematical formalism of quantum theory as a modeling tool for entities and their dynamics in domains different from the micro-world has now firmly shown the systematic appearance of quantum structures in aspects of human behavior and thought, such as in cognitive processes of decision-making, and in the way concepts are combined into sentences. In this paper, we extend this insight to animal behavior showing that a quantum probabilistic structure models the mating competition of three side-blotched lizard morphs. We analyze a set of experimental data collected from 1990 to 2011 on these morphs, whose territorial behavior follows a cyclic rock-paper-scissors (RPS) dynamics. Consequently we prove that a single classical Kolmogorovian space does not exist for the lizard's dynamics, and elaborate an explicit quantum description in Hilbert space faithfully modeling the gathered data. This result is relevant for population dynamics as a whole, since many systems, e.g. the so called plankton paradox situation, are believed to contain elements of cyclic competition.
 
  • Like
Likes AlexCaledin
Physics news on Phys.org
  • #2
Absolutely nothing useful. Nothing to do with Quantum Mechanics either.
 

What are "Three Papers"?

"Three Papers" is a term commonly used in academia to refer to a set of three published research papers that are considered to be a significant contribution to a specific field of study.

What is the purpose of publishing "Three Papers"?

The main purpose of publishing "Three Papers" is to showcase a scientist's ability to conduct original and impactful research, and to demonstrate their expertise in a particular area of study.

How are "Three Papers" evaluated by the scientific community?

"Three Papers" are typically evaluated based on the quality of the research, the significance of the findings, and the impact of the papers in advancing the field of study. They may also be evaluated based on the number of citations and the reputation of the journals in which they are published.

Can "Three Papers" be published in different journals?

Yes, it is common for "Three Papers" to be published in different journals, as long as they are all related to a common theme or research project. This can demonstrate the breadth of a scientist's work and their ability to publish in different journals with varying levels of impact.

Is publishing "Three Papers" necessary for a successful career in science?

No, publishing "Three Papers" is not a requirement for a successful career in science. The number and quality of publications vary among different fields and career paths. What is more important is the impact and significance of a scientist's research, rather than the number of papers published.

Similar threads

  • Quantum Physics
Replies
15
Views
2K
  • Quantum Interpretations and Foundations
Replies
3
Views
2K
  • Quantum Physics
Replies
1
Views
706
  • Quantum Interpretations and Foundations
Replies
1
Views
530
  • Quantum Interpretations and Foundations
Replies
25
Views
1K
  • Quantum Interpretations and Foundations
11
Replies
376
Views
10K
  • Quantum Interpretations and Foundations
2
Replies
37
Views
1K
  • Quantum Interpretations and Foundations
2
Replies
41
Views
3K
  • Astronomy and Astrophysics
Replies
1
Views
2K
  • Beyond the Standard Models
Replies
2
Views
2K
Back
Top