MHB Transfer function of a damped hanging mass

AI Thread Summary
To find the transfer function of a damped hanging mass system, the equations of motion for both masses must be correctly established. The input force \(u\) and the damping force \(F_d\) are defined, leading to the equations \(u - b(\dot{x}_1 + \dot{x}_2) = m(\ddot{x_1} + \ddot{x_2})\) and separate equations for each mass. The Laplace transforms yield equations that include both \(X_1(s)\) and \(X_2(s)\), complicating the derivation of the transfer function \(H(s) = \frac{X_1(s)}{U(s)}\). To isolate \(X_2(s)\), one approach is to express it in terms of \(X_1(s)\) using the established equations, allowing for simplification. The discussion emphasizes the need for careful modeling of the system dynamics to accurately derive the transfer function.
Dustinsfl
Messages
2,217
Reaction score
5
How do I find the transfer function of damped masses hanging?

I know that the transfer function is
\[
H(s) = \frac{\mathcal{L}\{y(t)\}}{\mathcal{L}\{x(t)\}}
\]
where \(u\) is the input which is a force and \(x_1\) is the output.

Given the following diagram (see below), how do I find the input and output functions?

http://imagizer.imageshack.us/v2/800x600q90/40/eh7q.png
 
Last edited:
Mathematics news on Phys.org
The force of damping is
\[
F_d = b\frac{dx}{dt}
\]
so by Newton's Law, the system can be written as
\[
u - b(\dot{x}_1 + \dot{x}_2) = m(\ddot{x_1} + \ddot{x}_2).
\]
Is this Correct?

How do I separate out the input from the output?
 
I tried modeling the forces separately but not sure if this is wise either.

For the first mass, we have $-b\dot{x}_1 = m\ddot{x_1}$, correct?

Now the second is $-b(\dot{x}_1 + \dot{x}_2) + u = m\ddot{x}_2$, correct?

I should be able to take the Laplace transform of both and end up with what I need to construct the transfer function which is
$$
H(s) = \frac{X_1(s)}{U(s)}.
$$
However, I still have and $X_2(s)$. Are my equations of motion wrong? If not, what am I doing incorrectly?

If take the Laplace transform of both, we have
\[
X_1(s)(s^2m + bs) = 0
\]
and
\[
X_2(s)(s^2m + sb) + sbX_1(s) - U(s) = 0
\]
The initial conditions are zero since when finding the transfer function, the initial conditions are zero by definition. If this is correct, how do I get rid of \(X_2(s)\)?
 
Last edited:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top