Uncertainty in Newton's law of cooling

AI Thread Summary
The discussion focuses on calculating the uncertainty in the cooling constant k using Newton's law of cooling, given temperature uncertainties of +/- 0.5 degrees. The user seeks clarification on the uncertainty of the natural logarithm of the temperature difference and how to incorporate this into the calculation of k. Different approaches to uncertainty are highlighted, with an emphasis on using standard deviations and root-sum-square methods for a scientific perspective. The conversation also touches on the need to find the uncertainty in the exponential term e^(-kt). The thread ultimately aims to clarify the correct method for determining k's uncertainty in the context of temperature measurements.
sunmoonlight
Messages
8
Reaction score
1
Homework Statement
Uncertainty in Newton's law of cooling
Relevant Equations
T(t) = = 𝑇_𝐴+(𝑇_𝑜−𝑇_𝐴)𝑒^(−𝑘𝑡)
I'm finding the uncertainty of k, given that each temperature has an uncertainty of +/- 0.5 degress.
 
Physics news on Phys.org
sunmoonlight said:
Homework Statement: Uncertainty in Newton's law of cooling
Relevant Equations: T(t) = = 𝑇_𝐴+(𝑇_𝑜−𝑇_𝐴)𝑒^(−𝑘𝑡)

I'm finding the uncertainty of k, given that each temperature has an uncertainty of +/- 0.5 degress.
You will also need approximate values for the temperatures.
Per forum rules, please show some attempt.
 
say the T(O) = 90 +/- 0.5, T(t): 60 +/- 0.5, TA = 10 +/- 0.5, temp difference (T(t) - TA) is 50 degrees +/- 0.5, t= 100s
1. Is the uncertainty for ln (T(t) - TA) = 1/2*(ln50.5 - ln49.5) = +/-0.01?
2. If you substitute the values into the eqt, you get k = (ln50/80)/-100, so what's the uncertainty for k (like how do you find uncertainty involving logs?)
 
sunmoonlight said:
say the T(O) = 90 +/- 0.5, T(t): 60 +/- 0.5, TA = 10 +/- 0.5, temp difference (T(t) - TA) is 50 degrees +/- 0.5, t= 100s
1. Is the uncertainty for ln (T(t) - TA) = 1/2*(ln50.5 - ln49.5) = +/-0.01?
2. If you substitute the values into the eqt, you get k = (ln50/80)/-100, so what's the uncertainty for k (like how do you find uncertainty involving logs?)
There are different concepts of uncertainty. An engineer worried about engineering tolerances would just look at the combinations of the extreme values. A scientist would take the given uncertainties as standard deviations in normal distributions and use root-sum-square approaches to combine them. I assume you are looking for the latter.

Can you find the uncertainty in ##e^{-kt}##?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top