Use method of difference to find sum of series

  • Thread starter Thread starter chwala
  • Start date Start date
  • Tags Tags
    Series Sum
chwala
Gold Member
Messages
2,827
Reaction score
415
Homework Statement
see attached.
Relevant Equations
series sum
My interest is on the (highlighted part in yellow ) of finding the partial fractions- Phew took me time to figure out this out :cool:

1712734754003.png



1712734790657.png


My approach on the highlighted part;

i let

##(kr+1) =x ##

then, ##\dfrac{1}{(kr+1)(kr-k+1)} = \dfrac{1}{x(x-k)}##
then,

##\dfrac{1}{(x)(x-k)}=\dfrac{A}{x} +\dfrac{B}{x-k}##

##1=A(x-k)+Bx##

##Ax+Bx=0##
##-Ak=1##

##A=\dfrac{-1}{k}##

i know that ##A+B=0##
##B=\dfrac{1}{k}##

thus,

##\dfrac{1}{(x)(x-k)}=\dfrac{-1}{kx} +\dfrac{1}{k(x-k)}##

##\dfrac{1}{(kr+1)(kr-k+1)}=\dfrac{-1}{k(kr+1)} +\dfrac{1}{k(kr-k+1)}##

##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(kr-k+1)}-\dfrac{1}{k(kr+1)}##

##\dfrac{1}{(kr+1)(kr-k+1)}= \dfrac{1}{k(k(r-1)+1)}-\dfrac{1}{k(kr+1)}##

any simpler or alternative approach (in determining the partial fractions) prompted this post.
 
Last edited:
Physics news on Phys.org
This is also related,

1712735771650.png


solution:
1712736049102.png

My steps,

##\lim_{n \rightarrow +\infty} \left[\dfrac{n}{kn+1}\right] = \lim_{n \rightarrow +\infty} \left[\dfrac{1}{k+1/n}\right]= \left[\dfrac{1}{k+0}\right]=\dfrac{1}{k}##
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top