Using Momentum Principle to Find Ratio of Speeds?

  • #1
Spooky123
3
0
Homework Statement
Two different experiments are performed. In the first experiment, a constant force is applied to a hydrogen ion. In the second experiment, the same constant applied force is applied to an ion that has a mass 12 times the mass of hydrogen. In each experiment, the ion is at rest at location A. Note that this force is much larger than any possible gravitational force on the ions, so you can neglect gravity.
Relevant Equations
Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F.

Pf = Pi + FnetT
Vavg = v1 + v2 / 2
Vavg = r/t
Given that the ions are initially at rest my initial velocity is 0. Therefore my Vavg is equal to vf/2
Using the formula Vavg = Change in positon/time, I can solve vf to be equal to 2r/t.

Using the momentum principle, I get an equation of 2r/t = FnetT/12m -> Given that the mass of the ion is 12x Hydrogen.

However, when I solve for FnetT/12m divided by FnetT/m I get a ration of 1/12. Which is incorrect...

This question should only use the momentum principle and velocity equations without having to involve acceleration.
 
Physics news on Phys.org
  • #2
Spooky123 said:
Homework Statement: Two different experiments are performed. In the first experiment, a constant force is applied to a hydrogen ion. In the second experiment, the same constant applied force is applied to an ion that has a mass 12 times the mass of hydrogen. In each experiment, the ion is at rest at location A. Note that this force is much larger than any possible gravitational force on the ions, so you can neglect gravity.
Relevant Equations: Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F.

Pf = Pi + FnetT
Vavg = v1 + v2 / 2
Vavg = r/t

Given that the ions are initially at rest my initial velocity is 0. Therefore my Vavg is equal to vf/2
Using the formula Vavg = Change in positon/time, I can solve vf to be equal to 2r/t.

Using the momentum principle, I get an equation of 2r/t = FnetT/12m -> Given that the mass of the ion is 12x Hydrogen.

However, when I solve for FnetT/12m divided by FnetT/m I get a ration of 1/12. Which is incorrect...

This question should only use the momentum principle and velocity equations without having to involve acceleration.
If you are acting on both ions for the same amount of time, then
##v = v_0 + aT##

Assuming that ##v_0 = 0## m/s for both, then
##v = aT##.

Now, ##F = ma##, so
##v = \dfrac{FT}{m}##

So, for Hydrogen:
##v = \dfrac{FT}{m}##

Let's call the other ion carbon. So for carbon:
##V = \dfrac{FT}{12m}##

The ratio of these will be

##\dfrac{V}{v} = \dfrac{1}{12}##

as you said above.

-Dan
 
  • #3
Spooky123 said:
Pf = Pi + FnetT
This question should only use the momentum principle and velocity equations without having to involve acceleration.
You have all the ingredients above to do what you are asked. Remember that pi = 0. You don't need any velocity or acceleration equations.
 
  • #4
The correct answer for this question is 0.2889. I guess it might be an error.
 
  • #5
Spooky123 said:
The correct answer for this question is 0.2889. I guess it might be an error.
How can the correct answer be a number (with no units) when the task is to "Derive an expression for the final y-velocity of an ion as a function of its mass, the time interval At, and the force on the ion F"?
 
  • Like
Likes topsquark and nasu

1. What is the momentum principle and how is it used to find the ratio of speeds?

The momentum principle is a fundamental concept in physics that states that the total momentum of a system remains constant unless acted upon by an external force. This principle can be used to find the ratio of speeds by equating the initial and final momenta of the objects involved in a collision or interaction.

2. Can the momentum principle be applied to all types of collisions?

Yes, the momentum principle can be applied to all types of collisions, including elastic and inelastic collisions. However, the calculations may vary depending on the type of collision and the information given.

3. What information is needed to use the momentum principle to find the ratio of speeds?

To use the momentum principle, you will need to know the masses of the objects involved in the collision or interaction, as well as their initial and final velocities. In some cases, additional information such as the coefficient of restitution may also be needed.

4. Can the momentum principle be used to find the ratio of speeds in non-linear systems?

Yes, the momentum principle can be used in non-linear systems, as long as the conservation of momentum is still applicable. However, the calculations may be more complex and may require advanced mathematical techniques.

5. How accurate are the results obtained using the momentum principle to find the ratio of speeds?

The accuracy of the results obtained using the momentum principle will depend on the accuracy of the initial data and the assumptions made. In ideal situations, the results should be very accurate, but in real-world scenarios, there may be some discrepancies due to factors such as external forces and friction.

Similar threads

  • Introductory Physics Homework Help
Replies
3
Views
223
  • Introductory Physics Homework Help
Replies
20
Views
981
  • Introductory Physics Homework Help
Replies
19
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
1K
  • Introductory Physics Homework Help
Replies
7
Views
1K
  • Introductory Physics Homework Help
Replies
10
Views
907
  • Introductory Physics Homework Help
10
Replies
335
Views
8K
  • Introductory Physics Homework Help
Replies
13
Views
1K
  • Introductory Physics Homework Help
2
Replies
45
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
827
Back
Top