Work Done on A Proton in an Electric Field

AI Thread Summary
The equation for work done on a proton in an electric field is given as W = -qEd, resulting in a calculation of -2.76 x 10^-18 J. The confusion arises regarding why the work is reported as positive, despite the proton moving in the direction of the electric field. The key point is that the work done by the electric field is considered positive, as it indicates energy supplied to the proton. The negative sign in the equation reflects the work done against the field when considering the proton's charge. Ultimately, the positive value represents the energy gained by the proton from the electric field.
physicslady123
Messages
10
Reaction score
0
Homework Statement
Calculate the work done in moving a proton 0.75 m in the same direction as the electric field
with a strength of 23 N/C
Relevant Equations
W=-qEd
W=-qEd
=-(1.6*10^-19)(23)(0.75)
= -2.76*10^-18 J

However, the answer is 2.76*10^-18 J. Why is the word done positive and not negative? Since it's traveling in the same direction as the electric field, shouldn't it be negative work?
 
Physics news on Phys.org
It seems to me the result quotes the work done by the field
 
  • Like
Likes physicslady123
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top