Let 1, z_1, \dots z_{n-1} be the roots of unity.
We want to find :
\prod_{i=1}^{n-1} \frac{1}{2i} (z_i - \frac{1}{z_i}),
or
\left(\frac{1}{2i}\right)^{n-1} \times (-1)^{n-1} \prod_{i=1}^{n-1} \frac{(1 -z_i)(1+z_i)}{z_i} .
Now, if P(z)=z^{n} -1 , then, for z \neq 1...