Recent content by avenior
-
A
Body decay on the axis of an infinite wedge
##\operatorname{tg}\varphi^{'} = \frac{u \sin\varphi}{\gamma (u \cos\varphi - V)}## and ##\varphi = \frac{\pi}{2}##. Hence tangent of the boundary angle in a moving coordinate system ##\operatorname{tg}\varphi^{'} = -\frac{1}{\gamma}\frac{u}{V}##. But ##\frac{\alpha^{'}}{2} = \pi - \varphi^{'}##...- avenior
- Post #13
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
Yes. Given the condition of the task, I think ##\varphi \in \left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]##.- avenior
- Post #11
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
##\varphi \in \left[0,\pi\right]## or ##\varphi \in \left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]##?- avenior
- Post #9
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
##\cos \varphi < \frac{V}{u}## and ##\varphi## should depend on ##\frac{\alpha}{2}##, but I don't understand how to take into account half of the splinters.- avenior
- Post #7
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
Ok, thanks. But how does it relate to the fact that half should collide with the surface?- avenior
- Post #5
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
The splinter will collide with the moving surface if $$-\operatorname{tg}\frac{\alpha}{2} < \frac{u \sin\varphi}{\gamma (u \cos\varphi - V)} < \operatorname{tg}\frac{\alpha}{2}$$- avenior
- Post #3
- Forum: Introductory Physics Homework Help
-
A
Body decay on the axis of an infinite wedge
Homework Statement On the axis of an infinite wedge that moves with velocity ##\vec{V}##, the body decays with the formation of a lot of splinters that fly away uniformly in all directions with velocity ##\vec{u}##. What should be the angle of the wedge that half of the splinters fall on its...- avenior
- Thread
- Axis Body Decay Infinite Relaitivity Wedge
- Replies: 12
- Forum: Introductory Physics Homework Help