yeah, I know how to prove it.
I just has an idea of what does "T is a finite dimensional subspace of L(V)" mean.
Does It mean that T is a subset of one kind of operator and this subset must be closed under addition and scalar multiplication.
for example, the non-invertible operator is not a...
Hi all,
I have some questions about the concept of subspace of linear transformation and its dimension, when I try to prove following problems:
Prove T is a finite dimensional subspace of L(V) and U is a finite dimensional subspace of V, then
T(U) = {F(u) | F is in T, u is in U} is a...