Recent content by chicky

  1. C

    Proving the Convergence of a Sequence Using Riemann Sums

    i just don't know it thanks any ways
  2. C

    Proving the Convergence of a Sequence Using Riemann Sums

    am sorry the limit are in the wrong order but the inequality is true am sure
  3. C

    Proving the Convergence of a Sequence Using Riemann Sums

    \frac{1}{n+1}+ \frac{1}{n+2}+ \cdot\cdot\cdot + \frac{1}{2n}\le \int_{2n}^n\frac{dt}{t}\le \frac{1}{n}+ \cdot\cdot\cdot + \frac{1}{2n-1} we must show this not deduce it
  4. C

    Proving the Convergence of a Sequence Using Riemann Sums

    \frac{1}{n+1}+ \frac{1}{n+2}+ \cdot\cdot\cdot + \frac{1}{2n}\le \int_{2n}^n\frac{dt}{t}\le \frac{1}{n}+ \cdot\cdot\cdot + \frac{1}{2n-1} its like this not two integrals its one integral
  5. C

    Proving the Convergence of a Sequence Using Riemann Sums

    show that 1/n+1 +1/n+2 +...1/2n≤from 2n to n∫dt/t≤1/n+...1/2n-1 consider the sequene (Vn) defined by: Vn= 1/n+1 +...+1/2n=from 2n to p=n+1∑1/p deduce from above that ln2-1/2n≤ Vn≤ln2 i didnt find any thing
Back
Top