I think the initial assumptions would allow me to prove this without induction.
Suppose ##(x_n)## is a real sequence that is bounded above. Define $$ y_n = \sup\{x_j | j \geq n\}.$$
Let ##n \in \mathbb{N}##. Then for all ##j \in \mathbb{N}## such that ##j \geq n + 1 > n##
$$ x_{j} \leq y_n.$$...