When we take this problem in center of mass frame of reference, where will be center of force, which acts on the reduced mass, located? What difference does it make to the solution of the problem (with respect to the integration limits)?
I think that is because any constant phase factor gets canceled out when you write the Schrodinger's equation. So ψ is only accurate within a constant complex phase. I actually meant 'iπ' to be added to that constant phase so as to make it equal to option C there. Also physical significance of...
Does this really solve the problem? I mean we can add a π further to the overall phase (can we?) and it will be the option C that is listed there. Is this correct?
Also I was wondering if E1<E2 always. Because in that case the time T mentioned would be negative. What would it imply?
Homework Statement
The wave function Ψ of a quantum mechanical system described by a Hamiltonian H ̂ can be written as a linear combination of linear combination of Φ1 and Φ2 which are eigenfunctions of H ̂ with eigenvalues E1 and E2 respectively. At t=0, the system is prepared in the state...