Thanks for your help!
One more quick question: would that mean that one of the eigenvalues of the MOI tensor would be 0, which makes the matrix singular? So it's actually impossible to come up with a MOI tensor that is invertible for n = 2?
I probably made things more confusing with that explanation, sorry. Let's pretend they're connected particles that form a rigid body. What happens then for the case of n = 2, and how does one formulate a moment of inertia tensor? Why doesn't the same approach for n>=2 work?
Hi tiny-tim,
Thanks for the reply!
I should have explained - this is all part of an explicit time integrator scheme, so that at each step, the particles can be considered (temporarily) rigid in order to calculate their velocities/positions at the next step. Although their relative positions...
Hi,
I need to compute the inverse of the moment of inertia (MOI) tensor of a bunch of point particles in a simulation algorithm. The number and location of the particles differs at each evaluation. In all cases, I'm taking the particle coordinates with respect to their center of mass...