Recent content by Delong66
-
D
Undergrad Prove $$T_{p}M$$ is a vector space with the axioms
Definition 1: Suppose M a differentiable manifold and $$p\in M$$. A funtion $$f:M \rightarrow \mathbb{R}$$ is differentiable at $$p \in M$$ iff $$\exists U_p \subset M$$ : $$f:U_p \rightarrow \mathbb{R}$$ is differentiable. Definition 2:Dp ={set of all differentiable functions at p in M}...- Delong66
- Post #3
- Forum: Differential Geometry
-
D
Undergrad Prove $$T_{p}M$$ is a vector space with the axioms
Suppose M is a manifold and $$T_{p}M$$ is the tangent space at a point $$p \in M$$. How do i prove that it is indeed a vector space using the axioms: Suppose that u,v, w $$\in V$$. where u,v, w are vectors and $$\V$$ is a vector space $$u + v \in V \tag{Closure under addition}$$ $$u + v = v +...- Delong66
- Thread
- Axioms Space Vector Vector space
- Replies: 3
- Forum: Differential Geometry
-
D
Undergrad Are the coordinate axes a 1d- or 2d-differentiable manifold?
Suppose $$ D=\{ (x,0) \in \mathbb{R}^2 : x \in \mathbb{R}\} \cup \{ (0,y) \in \mathbb{R}^2 : y \in \mathbb{R} \}$$ is a subset of $$\mathbb{R}^2 $$ with subspace topology. Can this be a 1d or 2d manifold? Thank you!- Delong66
- Thread
- 1d Axes Coordinate Differential geometry Manifold Manifolds Topology
- Replies: 4
- Forum: Differential Geometry
-
D
Undergrad Is the projective space a smooth manifold?
Suppose you have the map $$\pi : \mathbb{R}^{n+1}-\{0\} \longrightarrow \mathbb{P}^n$$. I need to prove that the map is differentiable. But this map is a chart of $$\mathbb{P}^n$$ so by definition is differentiable? MENTOR NOTE: fixed Latex mistakes double $ signs and backslashes needed for math- Delong66
- Thread
- Differential geometry Manifold Manifolds Projective space Smooth Space
- Replies: 13
- Forum: Differential Geometry