Goodness gracious, now I think it IS correct again! Aaarg..
Stop me where I go wrong:
##(p\rightarrow q)\rightarrow r##
##=(\neg p\vee q)\rightarrow r##
##=\neg(\neg p\vee q)\vee r##
##=(p\wedge \neg q)\vee r##
If
##p=a\geq b##
##q=a\geq c##
##r=b\geq c##
Then ##(a\geq b\rightarrow a\geq...
Summary:: To prove a conditional statement on a pair of inequalitites.
Mentor note: Moved from technical forum section, so the post is missing the usual fields.
I feel it should be possible to prove this but I keep getting lost in the symbolic manipulation.
Theorem: If a>b implies a>c then...
I'll recapitulate.
My original question was about this in Fundamentals of Astrodynamics, by Bate (pg15):
"in general ##\boldsymbol{a\cdot\dot{a}}=a \; \dot{a}##."
Here's a picture of the page:
************************************************************************************...
To me its clear ## \vec u \cdot \vec v =\vert u\vert\vert v\vert## implies ##\theta=0##. None the less, I can't find the hole in the proof in #7 which says ##\vec{r}\cdot\frac{d\vec{r}}{dt}=r \frac{dr}{dt}## for a general vector ##\vec{r}=r \cos\theta \cdot \hat{i}+r \sin\theta \cdot...
I thought this as well, but look at this.
Let ##\vec{r}=r \cos\theta \cdot \hat{i}+r \sin\theta \cdot\hat{j}##.
Then ##\frac{d\vec{r}}{dt}=(\frac{dr}{dt} \cos \theta -r \sin\theta \frac{d\theta}{dt})\hat{i}+(\frac{dr}{dt}\sin\theta +r \cos\theta \frac{d\theta}{dt})\hat{j}##.
And ##...
Ok, solved. If you let ## \vec{r}=r \cos\theta \cdot \hat{i}+r sin\theta \cdot\hat{j}##, then calculate ##\vec{r}\cdot \frac{d \vec{r}}{dt}## you do indeed get ##r\cdot \frac{dr}{dt}## (scalar).
A more complete quote of the passage:
"1. Dot multiplying equation (1.3-4) by ##\dot{r}##
##\dot{r}\cdot\ddot{r}+\dot{r}\cdot \frac{\mu}{r^3} r=0##
2. Since in general ##\boldsymbol{a\cdot\dot{a}}=a\dot{a}##, ##\boldsymbol{v=\dot{r}}##, and ##\boldsymbol{\dot{v}=\ddot{r}}##, then...
I'm reading Fundamentals of Astordynamics by Bate, Mueller, White and having trouble with this passage (pg15):
"2. Since in general a⋅a' = a a'..."
I don't think that this is the case. For instance in uniform circular motion r⋅r' = 0.
Would appreciate if anyone has some insight into this.