I'll recapitulate.
My original question was about this in
Fundamentals of Astrodynamics, by Bate (pg15):
"in general ##\boldsymbol{a\cdot\dot{a}}=a \; \dot{a}##."
Here's a picture of the page:
************************************************************************************
*************************************************************************************
It didn't make sense because I interpreted ##\dot{a}## to mean the length of the time derivative of vector ##a## in which case we should have ##\boldsymbol{a} \cdot \boldsymbol{\dot{a}} = a \; \dot a \; cos \theta##.
But since posting this question, I realized that the author intends ##\dot{a}## to mean the time derivative of the length of ## \boldsymbol{a} ## not the length of the time derivative of ##\boldsymbol{a}##.
I demonstrate that this indeed the case in #10 of the thread above (obviously I'm referring to the thread, what else would I be referring to, there is no #10 in the quote from the book).
Just check #10 above, where ##x## and ##y## are obviously implied to be functions of ##t## since when I took their time derivative they didn't disappear. In the last line of #10, I multiply the length of ##\boldsymbol{a}## by the time derivative of the length of ## \boldsymbol{a} ## and this equals ##\boldsymbol{a\cdot\dot{a}}##. Since ##\boldsymbol{a}## is a general vector this does prove the author's claim.
You don't really need 1.3-4 to solve the problem.
This must be a common question because I found it in two other places, once on Stack Exchange where I found the solution, and once on this site where it wasn't really clearly resolved.
Cheers.