You first need to prove [x , pn] = niħpn-1.
In order to do that take arbitrary values of n=1, 2, 3 and check.
You'll see for n=1 [x , p] = iħ result holds (as it is given and also we know)
for n=2 [x , p] = p[x , p] +[x , p]p = piħ +ipħ = 2ipħ = 2iħp2-1 again result holds...