Homework Statement
Using the Schrödinger equation find the parameter \alpha of the Harmonic Oscillator solution \Psi(x)=A x e^{-\alpha x^2}
Homework Equations
-\frac{\hbar^2}{2m}\,\frac{\partial^2 \Psi(x)}{\partial x^2} + \frac{m \omega^2 x^2}{2}\Psi(x)=E\Psi(x)
E=\hbar\omega(n+\frac{1}{2})...
Homework Statement
When a point charge is positioned at the origin = 0 in an isotropic
material, a separation of charge occurs around it, the Coulomb field of the
point charge is screened, and the electrostatic potential takes the form
\phi(r) = \frac{A}{r} \exp\left( -\frac{r}{\lambda}...
The Clausius-Clapeyron formula is given by
\frac{d P}{d T} = \frac{L}{T \Delta V}
where P and T are the pressure and temperature at the boiling point, respectively, and L is the latent heat per mole at the boiling point, and \Delta V is the change in the volume per mole between the gas and...
Greetings.
So... let us consider a particle moving in the yz plane, coming from the infinite towards a region were a gravitational potential is appreciable. The Lagrangian of the system is
\mathcal{L} = \frac{1}{2}\mu (\dot{r}^2+r^2{\dot \phi}^2) + \frac{G\,m\,M}{r}
where \mu is the reduced...