Given a function f: R^n -> R, a point x in R^n, and an arbitrary vector v in R^n - is the dot product between grad f and v (evaluated at x) the same as df/dv?
If yes, it would be great if someone were to demonstrate a proof.
If no, what should be the correct interpretation of the dot product?
Just wondering - what are the essential features of Riemann-Stieltjes and Lebesgue-Stieltjes integration, and how do they differ from the usual Riemann/Lebesgue integration? In what sense are they more 'general' than the Riemann/Lebesgue integral?
The exposition of most texts in probability...