Thank you CWatters, and mfb! Your responses along with another post I found has hopefully got me back on track. I found the following post about the force generated at a motorcycle caliper bracket,it's quite similar to what I'm trying to do...
I'm not sure what to do here, I'm trying to do what you asked: You said forget the brake in step 4, and step 9 again you said focus on the wheel and the force, so I did. We're clearly not on the same page. I appreciate your help but I don't know where your trying to lead me. I wish could find a...
I don't know the torque of the brake, but I do know the deceleration and weight of the airplane; I'm attempting to work backwards using this information. I appreciate your help, thank you!
I'm using the force of the airplane slowing at a constant rate; F=ma, using the calculated deceleration of the airplane and the mass, dividing this number by two for two brakes, then using the result to find torque, t=Fr using the tire radius and the brake diameter.
Thanks for the response, I think what you're getting at is to simply take one half the force, for one of the two brakes, and do the following:
Bt=Fd,
F= 8632.3 N
d= (17.5" tire radius - 4" brake key radius, gives 13.5" lever arm, converted into meters = 0.3429m)
Bt=(0.3429m)(8632.3 N)
Bt(at...
Homework Statement
I'm working on this to further my understanding of parts used in an aircraft braking system.
Using known weight, and constant acceleration determine braking moment for a tricycle gear airplane with two main landing gear brakes.
Mass- 12,292 kg
Acceleration: -1.4 m/s^2
Tire...
I'm trying to figure out the average deceleration of an aircraft that touches the ground at 104 knots (175.53 ft/sec) and decelerates to zero in 3200 feet? Does anyone know how to do this? Thank you very much to all who reply.