If I use z2 = 4x4 I get:
z = 2x2 and dz/dx = z' = 4x
(\frac{dy}{dx}) = \frac{dy}{dz} \frac{dz}{dx} = 4x \frac{dy}{dz}
Then
\frac{d}{dx}(4x\frac{dy}{dz})=4\frac{dy}{dz}+\frac{d}{dz}(\frac{dy}{dz})\frac{dz}{dx}=4\frac{dy}{dz}+4x\frac{d^{2}y}{dz^{2}}
Plugging in:
x2(4y' + 4xy'') +...
1. Homework Statement , relevant equation
x^{2}y'' + xy' + (4x^{4}-\frac{1}{4})y = 0
2. The attempt at a solution
I tried substituting z = x2
From this I have \frac{dy}{dx} = 2x \frac{dy}{dz}
and \frac{d}{dx}(2x\frac{dy}{dz}) = 2xy'' + 2y'
Then the original equation becomes...