Well, here it is. I am at a loss as to how to approach this. I understand I can use the residue theorem for the poles at a and b, those are not the problem. I have heard that you can expand the function in a Laurent series and look at certain terms for the c term , but I don't fully understand...
y and x are both chosen at random. When A(x) and B(y) correspond to random material property fluctuations, the correlation function is either assumed to be of the form exp(r/L) where r is the absolute distance between the points and L is the average grain size for the polycrystalline material...
Ah, not what I wanted to hear (<A(x)>=0 centered fluctuations).
What if B(y) is a binary characteristic function that is 1 inside a specified volume size within the total volume(though its position is not known) and zero otherwise?
Hello and thank you in advance for anyone taking time to respond.
I working on formulating a theory for elastodynamics, but my statistics is admittedly weak. I'm trying to find a relationship between a non random function and a random function, for example, the covariance.
<A(x)B(y)>=some...