Let P(p) be the statement ##\sum_{k=1}^{n} k^p= \frac{n^{p+1}}{p+1}\ +An^{p}+Bn^{p-1}+Cn^{p-2}+...##
Observe that if p=1, the statement ##\sum_{k=1}^{n} k^1= \frac{n^2}{2}\ +\frac{n}{2}## , is true.
Suppose ∀n∈ℤ+, if P(1),...,P(p-1),P(p) are true, then P(p+1).
Observe that if p=1,...,p the...