Suppose that X is a random variable distributed in the interval [a;b] with pdf f(x) and cdf F(x). Clearly, F(b)=1. I only observe X for values that are bigger than y.
I know that E(X|X>y)=\frac{\int_y^b xf(x)dx}{1-F(y)}.
Moreover, \frac{∂E(X|X>y)}{∂y}=\frac{f(y)}{1-F(y)}[E(X|X>y)-y]
I...