Taking each term,
$$X_1(w_1,w_2) = 5$$
$$X_2(w_1,w_2) = 2jsin(w_2)$$
$$X_3(w_1,w_2) = cos(w_1)$$
$$X_4(w1,w2) = 2e^{(-jw_1-jw_2)}$$
then,
$$ x_1(n_1,n_2) = \dfrac{5}{(2π)^2} \int_{-π}^{π}\int_{-π}^{π} e^{jw_1n_1+jw_2n_2} dw_1dw_2$$
$$x_1(n_1,n_2) = \dfrac{5}{(2π)^2} \int_{-π}^{π}e^{jw_2n_2}[...