Recent content by Kurd

  1. Kurd

    Double integration problem for IDSFT

    Ok I got it. I didn't notice that $$\dfrac{sin(πn_1)}{πn_1}$$ which is a sinc function and equals 1 at n1 = 0.
  2. Kurd

    Double integration problem for IDSFT

    Taking each term, $$X_1(w_1,w_2) = 5$$ $$X_2(w_1,w_2) = 2jsin(w_2)$$ $$X_3(w_1,w_2) = cos(w_1)$$ $$X_4(w1,w2) = 2e^{(-jw_1-jw_2)}$$ then, $$ x_1(n_1,n_2) = \dfrac{5}{(2π)^2} \int_{-π}^{π}\int_{-π}^{π} e^{jw_1n_1+jw_2n_2} dw_1dw_2$$ $$x_1(n_1,n_2) = \dfrac{5}{(2π)^2} \int_{-π}^{π}e^{jw_2n_2}[...
  3. Kurd

    Double integration problem for IDSFT

    Homework Statement [/B] The 2D Discrete Space Fourier transform (DSFT) X(w1,w2) of the sequence x(n1,n2) is given by, $$X(w_1,w_2) = 5 + 2j sin(w_2) + cos(w_1) + 2e^{(-jw1-jw2)}$$ determine x(n1,n2)Homework Equations By definition inverse DSFT is, $$x(n_1,n_2) = \dfrac{1}{(2π)^2}...
Back
Top