Can I extend the function $f(x,y)=(x^2+y^2)\arctan\dfrac{1}{|xy|}$ to a continuous function?
If I consider the restriction of $f$ along the line $x=k$ i find $\lim_{(x,y)\rightarrow(k,0)}(x^2+y^2)\arctan\dfrac{1}{|xy|}=k^2\dfrac{\pi}{2}$
how can i prove that?
We can also solve it in this way:
$X=\cos x$
$Y=\sin x$
the equation $(2-\sqrt{2})(1+\cos x)+\tan x=0$ becomes: $(2-\sqrt{2})(1+X)+\dfrac{Y}{X}=0$.
From $\cos^2 x+\sin^2 x=1$ we have $X^2+Y^2=1$, hence:
$$
\left\{\begin{array}[l] ((2-\sqrt{2})(1+X)+\dfrac{Y}{X}=0\\X^2+Y^2=1\end{array}\right...
Thanks! There is another solution. When you use double-angle identities for cosine and tangent you have $x\neq \pi+2k\pi$, but this is also a solution of the equation.
Hi, in a book I have found this problem:
"Let be $f,g:\mathbb{R}\rightarrow\mathbb{R}$ two derivable functions such that $f(0)=g(0)$ and $f(6)=g(6)$. Which of the following statements is necessarily true?:
a) $\exists\ c\in]0;6[ : f'(c)=g'(c)$;
b) $\exists\ c_1,c_2\in]0;6[ : f'(c_1)=g'(c_2)$.
"...
Thanks $\chi\ \sigma$, in effect this equation is very hard to solve... I think that is impossible to find an analytic solution.. The numerical solution seems to be the only way at moment...
Hi! I have some problems with the integral
$$\iiint_T\sqrt{x^2+y^2}z^4e^{z^4}dx\ dy\ dz$$
where
$$T=\{(x,y,z)\in\mathbb{R}^3:\sqrt{x^2+y^2}\leq z\leq 1\}$$
I have tried to change it to spherical and cylindrical coordinates but... nothing
Can someone help me?
Thanks