MHB Find Integer $k$ to Satisfy Sum of Inverse Progression > 2000

AI Thread Summary
An integer \( k \) must be found such that the sum \( \frac{1}{k} + \frac{1}{k+1} + \frac{1}{k+2} + \cdots + \frac{1}{k^2} \) exceeds 2000. One participant confirmed their solution is correct and expressed appreciation for the challenge. The thread encourages further submissions and discussion on the problem. A solution from another source is mentioned but not detailed. Engaging with this challenge can enhance problem-solving skills in inverse progression.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find an integer $k$ for which $\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}>2000$.
 
Mathematics news on Phys.org
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...
 
laura123 said:
I try:
$\displaystyle\dfrac{1}{k}+\dfrac{1}{k+1}+\dfrac{1}{k+2}+\cdots+\dfrac{1}{k^2}=\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k-1}\dfrac{1}{n}$
The partial sums of the harmonic series have logarithmic growth i.e. $\displaystyle\sum_{1}^{k}\dfrac{1}{n}\sim \ln k$
therefore
$\displaystyle\sum_{1}^{k^2}\dfrac{1}{n}-\sum_{1}^{k}\dfrac{1}{n}\sim \ln k^2-\ln (k-1)=\ln\dfrac{k^2}{k-1}$.
$\ln\dfrac{k^2}{k-1}>2000\ \Rightarrow\ \dfrac{k^2}{k-1}>e^{2000}\ \Rightarrow k>\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}$.
$\dfrac{e^{2000}+\sqrt{e^{4000}-4e^{2000}}}{2}\sim 3.88\cdot 10^{868}$.
$4\cdot 10^{868}$ should be enough...

Hi Laura123,

Sorry for the late reply. I can explain...Actually I hoped there would be more submissions for this challenge, that was why I waited a bit longer...:o

You have done a great job there and your answer is correct, well done! And thanks for participating in this particular challenge.

I want to share with you and other members the solution that I have found online:

Solution of other:

Any integer $k>e^{2000}$ suffices.

For $\displaystyle \sum_{n=k}^{k^2} \dfrac{1}{n}=\int_{k}^{k^2+1} \dfrac{1}{\left\lfloor{x}\right\rfloor}\,dx>\int_{k}^{k^2} \dfrac{1}{x}\,dx=\ln k$

and $\ln k>2000$ when $k>e^{2000}$.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top