\theta is a positive constant.
We consider the set
S=\left\{(F,h):F is a decreasing function from R^{+} to R^{+}, h\in R, 0=1- \frac{\theta+1}{\theta} \frac {\int^{h}_{y=0} F(y) dy}{F(0)} \frac{F(0)-\frac{1}{2}F(h)}{F(0)-F(h)} \right\}
The function L is defined on S by
L(F,h)=...
The mathematical problem:
$\theta$ is a constant that equals 0.8.
We consider the set
'$ S=\left\{(F,h):F is a decreasing function from R^{+} to R^{+}, h\in R, 0=1- \frac{\theta+1)}{\theta} \frac {(\int^{h}_{y=0} F(y) dy)}{/F(0)} \frac{F(0)-\frac{1}{2}}{F(0)-F(h)} \right\}$'
The function L...