Recent content by Metric_Space

  1. M

    Complex Integral Along a Path with Residue Theorem

    so the integral would be zero in this case since the residues are -i and i?
  2. M

    Complex Integral Along a Path with Residue Theorem

    How can I use these facts to evaluate the integral?
  3. M

    Does an Analytic Function Vanishing on a Disc Boundary Vanish Inside?

    Is it just as simple as applying the Cauchy Integral formula? ie. it follows directly from the CIF?
  4. M

    Complex Integral Along a Path with Residue Theorem

    Homework Statement Evaluate the integral along the path given: integral(along a(t) of (b^2-1)/(b^2+1) db ) where a(t)=2*e^(it) , 0 <= t <= 2*pi Homework Equations none The Attempt at a Solution I am thinking of using the Residue Theorem. I think there are poles at -i...
  5. M

    Does an Analytic Function Vanishing on a Disc Boundary Vanish Inside?

    Homework Statement If an analytic function vanishes on the boundary of a closed disc in its domain , show it vanishes on the full disc Homework Equations CR equations? The Attempt at a Solution Not sure how to start this one.
  6. M

    Proving The Hamming Metric: Open Subsets and Basis of X

    I have a new question. How would I show that the metric space defined by the Hamming metric is complete?
  7. M

    What does the following subring of the complex numbers look like

    I was trying to figure out a way of writing things not in the subring, other than the way already written in the question
  8. M

    What does the following subring of the complex numbers look like

    I'm not sure how to describe polynomials of this form
  9. M

    What does the following subring of the complex numbers look like

    The only difference I can see is things not in the subring don't contain i's, constant terms, or combinations of them
  10. M

    Does c^a=d^a and c^b=d^b imply c=d in a domain?

    ah...very useful hint I solved for a before a in ak+lb=1...and that's what made a mess ...this hint 'solved' it - thanks!
Back
Top