Analysis math help please!?
1. Let E be a nonempty subset of R (real numbers)
Prove that infE <= supE
2. Prove that if a > 0 then there exists n element N (natural) such that 1/n < a < n
3. A subset E of te real numbers R is an inductive set if
i) 1 element E
ii) If x element E...
Analysis math help please!?
1. Let E be a nonempty subset of R (real numbers)
Prove that infE <= supE
2. Prove that if a > 0 then there exists n element N (natural) such that 1/n < a < n
3. A subset E of te real numbers R is an inductive set if
i) 1 element E
ii) If x element E...
1. Let E be a nonempty subset of R (real numbers)
Prove that infE <= supE
2. Prove that if a > 0 then there exists n element N (natural) such that 1/n < a < n
3. A subset E of te real numbers R is an inductive set if
i) 1 element E
ii) If x element E then x + 1 element E
A real...